Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,19 @@ import librosa
|
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
import gradio as gr
|
|
|
6 |
|
7 |
# Load the pre-trained model
|
8 |
model_path = 'sound_to_text_model.h5'
|
9 |
model = tf.keras.models.load_model(model_path)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Function to extract features from audio
|
12 |
def extract_features(file_path):
|
13 |
y_audio, sr = librosa.load(file_path, duration=2.0)
|
@@ -16,7 +24,7 @@ def extract_features(file_path):
|
|
16 |
|
17 |
# Function to predict text from audio
|
18 |
def predict_sound_text(audio):
|
19 |
-
features = extract_features(audio
|
20 |
prediction = model.predict(np.array([features]))
|
21 |
label = encoder.inverse_transform([np.argmax(prediction)])
|
22 |
return label[0]
|
@@ -24,7 +32,7 @@ def predict_sound_text(audio):
|
|
24 |
# Define Gradio interface
|
25 |
interface = gr.Interface(
|
26 |
fn=predict_sound_text,
|
27 |
-
inputs=gr.Audio(type="filepath"), #
|
28 |
outputs="text",
|
29 |
title="Audio to Text Converter",
|
30 |
description="Upload an audio file (MP3 format) and get the textual representation."
|
|
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
import gradio as gr
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
|
8 |
# Load the pre-trained model
|
9 |
model_path = 'sound_to_text_model.h5'
|
10 |
model = tf.keras.models.load_model(model_path)
|
11 |
|
12 |
+
# Initialize the encoder (make sure it's fitted to your labels)
|
13 |
+
# Note: You need to fit the encoder to your actual labels before saving/loading the model
|
14 |
+
# For example, you can use the same encoder you used during training
|
15 |
+
encoder = LabelEncoder()
|
16 |
+
# Assuming you have a list of labels used during training (e.g., y)
|
17 |
+
# encoder.fit(y) # Uncomment and run this if you haven't already fitted the encoder
|
18 |
+
|
19 |
# Function to extract features from audio
|
20 |
def extract_features(file_path):
|
21 |
y_audio, sr = librosa.load(file_path, duration=2.0)
|
|
|
24 |
|
25 |
# Function to predict text from audio
|
26 |
def predict_sound_text(audio):
|
27 |
+
features = extract_features(audio) # Use audio directly as the file path
|
28 |
prediction = model.predict(np.array([features]))
|
29 |
label = encoder.inverse_transform([np.argmax(prediction)])
|
30 |
return label[0]
|
|
|
32 |
# Define Gradio interface
|
33 |
interface = gr.Interface(
|
34 |
fn=predict_sound_text,
|
35 |
+
inputs=gr.Audio(type="filepath"), # Use only the type argument
|
36 |
outputs="text",
|
37 |
title="Audio to Text Converter",
|
38 |
description="Upload an audio file (MP3 format) and get the textual representation."
|