import gradio as gr import numpy as np import pandas as pd from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import tokenizer_from_json from tensorflow.keras.preprocessing.sequence import pad_sequences # Load the trained model model = load_model("text_to_wingdings_model_complex.h5") # Load the tokenizer with open("tokenizer.json") as json_file: tokenizer = tokenizer_from_json(json_file.read()) # Function to convert text to Wingdings def convert_to_wingdings(input_text): # Preprocess the input text text_sequence = tokenizer.texts_to_sequences([input_text]) max_length = 500 # Set to 500 as desired text_sequence = pad_sequences(text_sequence, maxlen=max_length, padding='post') # Predict the output predictions = model.predict(text_sequence) wingdings_sequence = np.argmax(predictions, axis=-1) # Convert the sequence back to characters wingdings_output = ''.join([tokenizer.index_word[i] for i in wingdings_sequence[0] if i != 0]) return wingdings_output # Create Gradio interface iface = gr.Interface( fn=convert_to_wingdings, inputs=gr.Textbox(label="Input Text", placeholder="Type your text here..."), outputs=gr.Textbox(label="Wingdings Output"), title="Text to Wingdings Converter", description="Enter text to convert it to Wingdings." ) # Launch the interface iface.launch()