Spaces:
Paused
Paused
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import tokenizer_from_json | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
# Load the trained model | |
model = load_model("text_to_wingdings_model_complex.h5") | |
# Load the tokenizer | |
with open("tokenizer.json") as json_file: | |
tokenizer = tokenizer_from_json(json_file.read()) | |
# Function to convert text to Wingdings | |
def convert_to_wingdings(input_text): | |
# Preprocess the input text | |
text_sequence = tokenizer.texts_to_sequences([input_text]) | |
max_length = 500 # Set to 500 as desired | |
text_sequence = pad_sequences(text_sequence, maxlen=max_length, padding='post') | |
# Predict the output | |
predictions = model.predict(text_sequence) | |
wingdings_sequence = np.argmax(predictions, axis=-1) | |
# Convert the sequence back to characters | |
wingdings_output = ''.join([tokenizer.index_word[i] for i in wingdings_sequence[0] if i != 0]) | |
return wingdings_output | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=convert_to_wingdings, | |
inputs=gr.Textbox(label="Input Text", placeholder="Type your text here..."), | |
outputs=gr.Textbox(label="Wingdings Output"), | |
title="Text to Wingdings Converter", | |
description="Enter text to convert it to Wingdings." | |
) | |
# Launch the interface | |
iface.launch() | |