WingdingsAI / app.py
szili2011's picture
Create app.py
551d64f verified
import gradio as gr
import numpy as np
import pandas as pd
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Load the trained model
model = load_model("text_to_wingdings_model_complex.h5")
# Load the tokenizer
with open("tokenizer.json") as json_file:
tokenizer = tokenizer_from_json(json_file.read())
# Function to convert text to Wingdings
def convert_to_wingdings(input_text):
# Preprocess the input text
text_sequence = tokenizer.texts_to_sequences([input_text])
max_length = 500 # Set to 500 as desired
text_sequence = pad_sequences(text_sequence, maxlen=max_length, padding='post')
# Predict the output
predictions = model.predict(text_sequence)
wingdings_sequence = np.argmax(predictions, axis=-1)
# Convert the sequence back to characters
wingdings_output = ''.join([tokenizer.index_word[i] for i in wingdings_sequence[0] if i != 0])
return wingdings_output
# Create Gradio interface
iface = gr.Interface(
fn=convert_to_wingdings,
inputs=gr.Textbox(label="Input Text", placeholder="Type your text here..."),
outputs=gr.Textbox(label="Wingdings Output"),
title="Text to Wingdings Converter",
description="Enter text to convert it to Wingdings."
)
# Launch the interface
iface.launch()