from transformers import AutoTokenizer, AutoModelForCausalLM import torch import gradio as gr import spaces torch.cuda.empty_cache() device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") model_name = "syubraj/MedicalChat-Phi-3.5-mini-instruct" try: model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name) print("Model and Tokenizer loaded successfully.") except Exception as e: raise ValueError(f"Error loading Model and Tokenizer: {e}") @spaces.GPU def generate_response(user_query: str, system_message: str = None, max_length: int = 1024) -> str: """ Generates a response based on the given user query. :param user_query: The user's input message. :param system_message: Custom system instruction (optional, defaults to medical assistant). :param max_length: Max tokens to generate. :return: Generated assistant response. """ if not user_query.strip(): return "Error: User query cannot be empty." if system_message is None: system_message = ("You are a trusted AI-powered medical assistant. " "Analyze patient queries carefully and provide accurate, professional, and empathetic responses. " "Prioritize patient safety, adhere to medical best practices, and recommend consulting a healthcare provider when necessary.") prompt = f"<|system|> {system_message} <|end|> <|user|> {user_query} <|end|> <|assistant|>" try: inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=max_length) # Decode response response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split("<|assistant|>")[-1].strip().split("<|end|>")[0].strip() except Exception as e: return f"Error generating response: {e}" # Gradio Interface def chat_interface(user_query, system_message=None): response = generate_response(user_query, system_message) return response with gr.Blocks() as demo: gr.Markdown("# Medical Chatbot") gr.Markdown("Ask your medical questions, and the AI will provide professional responses.") with gr.Row(): user_query = gr.Textbox(label="Your Query", placeholder="Enter your question here...", lines=3) system_message = gr.Textbox(label="System Message (Optional)", placeholder="Custom system instruction...", lines=3) submit_button = gr.Button("Submit") output = gr.Textbox(label="Assistant Response", lines=5) submit_button.click(chat_interface, inputs=[user_query, system_message], outputs=output) demo.launch()