Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import gradio as gr | |
import spaces | |
torch.cuda.empty_cache() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
model_name = "syubraj/MedicalChat-Phi-3.5-mini-instruct" | |
try: | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
print("Model and Tokenizer loaded successfully.") | |
except Exception as e: | |
raise ValueError(f"Error loading Model and Tokenizer: {e}") | |
def generate_response(user_query: str, system_message: str = None, max_length: int = 1024) -> str: | |
""" | |
Generates a response based on the given user query. | |
:param user_query: The user's input message. | |
:param system_message: Custom system instruction (optional, defaults to medical assistant). | |
:param max_length: Max tokens to generate. | |
:return: Generated assistant response. | |
""" | |
if not user_query.strip(): | |
return "Error: User query cannot be empty." | |
if system_message is None: | |
system_message = ("You are a trusted AI-powered medical assistant. " | |
"Analyze patient queries carefully and provide accurate, professional, and empathetic responses. " | |
"Prioritize patient safety, adhere to medical best practices, and recommend consulting a healthcare provider when necessary.") | |
prompt = f"<|system|> {system_message} <|end|> <|user|> {user_query} <|end|> <|assistant|>" | |
try: | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_length=max_length) | |
# Decode response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response.split("<|assistant|>")[-1].strip().split("<|end|>")[0].strip() | |
except Exception as e: | |
return f"Error generating response: {e}" | |
# Gradio Interface | |
def chat_interface(user_query, system_message=None): | |
response = generate_response(user_query, system_message) | |
return response | |
with gr.Blocks() as demo: | |
gr.Markdown("# Medical Chatbot") | |
gr.Markdown("Ask your medical questions, and the AI will provide professional responses.") | |
with gr.Row(): | |
user_query = gr.Textbox(label="Your Query", placeholder="Enter your question here...", lines=3) | |
system_message = gr.Textbox(label="System Message (Optional)", placeholder="Custom system instruction...", lines=3) | |
submit_button = gr.Button("Submit") | |
output = gr.Textbox(label="Assistant Response", lines=5) | |
submit_button.click(chat_interface, inputs=[user_query, system_message], outputs=output) | |
demo.launch() |