File size: 3,377 Bytes
b6894c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import PyPDF2
import os
import openai

def extract_text_from_file(file_path):
    # Get the file extension
    file_extension = os.path.splitext(file_path)[1]

    if file_extension == '.pdf':
        with open(file_path, 'rb') as file:
            # Create a PDF file reader object
            reader = PyPDF2.PdfFileReader(file)

            # Create an empty string to hold the extracted text
            extracted_text = ""

            # Loop through each page in the PDF and extract the text
            for page_number in range(reader.getNumPages()):
                page = reader.getPage(page_number)
                extracted_text += page.extractText()
        return extracted_text

    elif file_extension == '.txt':
        with open(file_path, 'r') as file:
            # Just read the entire contents of the text file
            return file.read()

    else:
        return "Unsupported file type"

def responce_from_ai(textjd, textcv):
    resume = extract_text_from_file(textjd)
    job_description = extract_text_from_file(textcv)

    response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=f"""Given the job description and the resume, assess the matching percentage and approximate percentage of the resume for the job.**Job Description:**{job_description}**Resume:**{resume}**Matching Assessment:**Based on an analysis of the resume and the job description,
the overall matching percentage is estimated to be approximately [insert approximate percentage here].
**Detailed Analysis:**
                the result should be in this format:
                matched percentage: [matching percentage]
                reason            : [reason for this result]
                keywords          : [matched key words from job_description and resume]""",
        temperature=0,
        max_tokens=100,
        n=1,
        stop=None,
    )
    generated_text = response.choices[0].text.strip()
    return generated_text

def matching_percentage(job_description_path, resume_path):

    job_description_path = job_description_path.name
    resume_path = resume_path.name

    generated_text = responce_from_ai(job_description_path, resume_path)
    return generated_text

title = """<br><br><br><div style="text-align: center;max-width: 700px;">
            <h1><a style="display:inline-block; margin-left: 1em; text-decoration:none; font-weight:bold;" >Syngenta </a> - Resume Matching</h1>
            </p>"""
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as app:
      gr.HTML("""<center><img class="image" align="center" src="https://logos-download.com/wp-content/uploads/2016/06/Syngenta_logo.png" alt="Image" width="200" height="200"></center>""")
      with gr.Row():
        with gr.Column(elem_id="col-container"):
          gr.HTML(title)
      with gr.Row():
        with gr.Column(scale=0.45, min_width=150, ):
          jobDescription = gr.inputs.File(label="Job Description")
        with gr.Column(scale=0.45, min_width=150):
          resume = gr.inputs.File(label="Resume")
        with gr.Column(scale=0.10, min_width=150):
          find = gr.Button("Find")
      with gr.Row():
        with gr.Column(scale=1.0, min_width=150):
          output = gr.outputs.Textbox(label="Matching Percentage")

      find.click(matching_percentage, [jobDescription, resume], [output])

app.launch()