File size: 24,689 Bytes
1605685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab279c
cc0b92d
5ab279c
cc0b92d
5ab279c
cc0b92d
5ab279c
cc0b92d
 
43a324f
 
 
 
 
 
 
cc0b92d
5ab279c
 
cc0b92d
5ab279c
 
 
cc0b92d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab279c
 
cc0b92d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab279c
 
 
cc0b92d
5ab279c
 
 
 
cc0b92d
5ab279c
 
 
 
 
 
 
 
 
 
cc0b92d
5ab279c
 
 
cc0b92d
 
5ab279c
 
cc0b92d
5ab279c
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0b92d
5ab279c
 
 
 
 
 
cc0b92d
5ab279c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0b92d
5ab279c
cc0b92d
 
 
5ab279c
 
 
 
 
cc0b92d
5ab279c
cc0b92d
 
 
 
5ab279c
 
1605685
 
 
 
 
 
 
 
 
 
 
0ad0d6d
1605685
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import re
from transformers import AutoTokenizer, AutoModelForTokenClassification
import gradio as gr

# # Load the trained model and tokenizer
# model_checkpoint = "BERTPOS"
# model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
# tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)


# load model from Huggingface
tokenizer = AutoTokenizer.from_pretrained("syke9p3/bert-tagalog-base-uncased-pos-tagger")
model = AutoModelForTokenClassification.from_pretrained("syke9p3/bert-tagalog-base-uncased-pos-tagger")

pos_tag_mapping = {
    '[PAD]': 0,
    'NNC': 1,
    'NNP': 2,
    'NNPA': 3,
    'NNCA': 4,
    'PR': 5,
    'PRS': 6,
    'PRP': 7,
    'PRSP': 8,
    'PRO': 9,
    'PRQ': 10,
    'PRQP': 11,
    'PRL': 12,
    'PRC': 13,
    'PRF': 14,
    'PRI': 15,
    'DT': 16,
    'DTC': 17,
    'DTP': 18,
    'DTPP': 19,
    'LM': 20,
    'CC': 21,
    'CCT': 22,
    'CCR': 23,
    'CCB': 24,
    'CCA': 25,
    'PM': 26,
    'PMP': 27,
    'PME': 28,
    'PMQ': 29,
    'PMC': 30,
    'PMSC': 31,
    'PMS': 32,
    'VB': 33,
    'VBW': 34,
    'VBS': 35,
    'VBN': 36,
    'VBTS': 37,
    'VBTR': 38,
    'VBTF': 39,
    'VBTP': 40,
    'VBAF': 41,
    'VBOF': 42,
    'VBOB': 43,
    'VBOL': 44,
    'VBOI': 45,
    'VBRF': 46,
    'JJ': 47,
    'JJD': 48,
    'JJC': 49,
    'JJCC': 50,
    'JJCS': 51,
    'JJCN': 52,
    'JJCF': 53,
    'JJCB': 54,
    'JJT': 55,
    'RB': 56,
    'RBD': 57,
    'RBN': 58,
    'RBK': 59,
    'RBP': 60,
    'RBB': 61,
    'RBR': 62,
    'RBQ': 63,
    'RBT': 64,
    'RBF': 65,
    'RBW': 66,
    'RBM': 67,
    'RBL': 68,
    'RBI': 69,
    'RBS': 70,
    'RBJ': 71,
    'RBY': 72,
    'RBLI': 73,
    'TS': 74,
    'FW': 75,
    'CD': 76,
    'CCB_CCP': 77,
    'CCR_CCA': 78,
    'CCR_CCB': 79,
    'CCR_CCP': 80,
    'CCR_LM': 81,
    'CCT_CCA': 82,
    'CCT_CCP': 83,
    'CCT_LM': 84,
    'CCU_DTP': 85,
    'CDB_CCA': 86,
    'CDB_CCP': 87,
    'CDB_LM': 88,
    'CDB_NNC': 89,
    'CDB_NNC_CCP': 90,
    'JJCC_CCP': 91,
    'JJCC_JJD': 92,
    'JJCN_CCP': 93,
    'JJCN_LM': 94,
    'JJCS_CCB': 95,
    'JJCS_CCP': 96,
    'JJCS_JJC': 97,
    'JJCS_JJC_CCP': 98,
    'JJCS_JJD': 99,
    '[UNK]': 100,
    '[CLS]': 101,
    '[SEP]': 102,
    'JJCS_JJN': 103,
    'JJCS_JJN_CCP': 104,
    'JJCS_RBF': 105,
    'JJCS_VBAF': 106,
    'JJCS_VBAF_CCP': 107,
    'JJCS_VBN_CCP': 108,
    'JJCS_VBOF': 109,
    'JJCS_VBOF_CCP': 110,
    'JJCS_VBN': 111,
    'RBQ_CCP': 112,
    'JJC_CCB': 113,
    'JJC_CCP': 114,
    'JJC_PRL': 115,
    'JJD_CCA': 116,
    'JJD_CCB': 117,
    'JJD_CCP': 118,
    'JJD_CCT': 119,
    'JJD_NNC': 120,
    'JJD_NNP': 121,
    'JJN_CCA': 122,
    'JJN_CCB': 123,
    'JJN_CCP': 124,
    'JJN_NNC': 125,
    'JJN_NNC_CCP': 126,
    'JJD_NNC_CCP': 127,
    'NNC_CCA': 128,
    'NNC_CCB': 129,
    'NNC_CCP': 130,
    'NNC_NNC_CCP': 131,
    'NN': 132,
    'JJN': 133,
    'NNP_CCA': 134,
    'NNP_CCP': 135,
    'NNP_NNP': 136,
    'PRC_CCB': 137,
    'PRC_CCP': 138,
    'PRF_CCP': 139,
    'PRQ_CCP': 140,
    'PRQ_LM': 141,
    'PRS_CCB': 142,
    'PRS_CCP': 143,
    'PRSP_CCP': 144,
    'PRSP_CCP_NNP': 145,
    'PRL_CCP': 146,
    'PRL_LM': 147,
    'PRO_CCB': 148,
    'PRO_CCP': 149,
    'VBS_CCP': 150,
    'VBTR_CCP': 151,
    'VBTS_CCA': 152,
    'VBTS_CCP': 153,
    'VBTS_JJD': 154,
    'VBTS_LM': 155,
    'VBAF_CCP': 156,
    'VBOB_CCP': 157,
    'VBOF_CCP': 158,
    'VBOF_CCP_NNP': 159,
    'VBRF_CCP': 160,
    'CCP': 161,
    'CDB': 162,
    'RBW_CCP': 163,
    'RBD_CCP': 164,
    'DTCP': 165,
    'VBH': 166,
    'VBTS_VBOF': 167,
    'PRI_CCP': 168,
    'VBTR_VBAF_CCP': 169,
    'DQL': 170,
    'DQR': 171,
    'RBT_CCP': 172,
    'VBW_CCP': 173,
    'RBI_CCP': 174,
    'VBN_CCP': 175,
    'VBTR_VBAF': 176,
    'VBTF_CCP': 177,
    'JJCS_JJD_NNC': 178,
    'CCU': 179,
    'RBL_CCP': 180,
    'VBTR_VBRF_CCP': 181,
    'PRP_CCP': 182,
    'VBTR_VBRF': 183,
    'VBH_CCP': 184,
    'VBTS_VBAF': 185,
    'VBTF_VBOF': 186,
    'VBTR_VBOF': 187,
    'VBTF_VBAF': 188,
    'JJCS_JJD_CCB': 189,
    'JJCS_JJD_CCP': 190,
    'RBM_CCP': 191,
    'NNCS': 192,
    'PRI_CCB': 193,
    'NNA': 194,
    'VBTR_VBOB': 195,
    'DC': 196,
    'JJD_CP': 197,
    'NC': 198,
    'NC_CCP': 199,
    'VBO': 200,
    'JJD_CC': 201,
    'VBF': 202,
    'CP': 203,
    'NP': 204,
    'N': 205,
    'F': 206,
    'CT': 207,
    'MS': 208,
    'BTF': 209,
    'CA': 210,
    'VBOF_RBR': 211,
    'DP': 212,
}


num_labels = len(pos_tag_mapping)
id2label = {idx: tag for tag, idx in pos_tag_mapping.items()}
label2id = {tag: idx for tag, idx in pos_tag_mapping.items()}

special_symbols = ['-', '&', "\"", "[", "]", "/", "$", "(", ")", "%", ":", "'", '.', '?', ',']

def symbol2token(symbol):

    # Check if the symbol is a comma
    if symbol == ',':
        return '[PMC] '

    elif symbol == '.':
        return '[PMP] '

    # Check if the symbol is in the list of special symbols
    elif symbol in special_symbols:
        return '[PMS] '

    # If the symbol is not a comma or in the special symbols list, keep it as it is
    return symbol

def preprocess_untagged_sentence(sentence):
    # Define regex pattern to capture all special symbols
    special_symbols_regex = '|'.join([re.escape(sym) for sym in ['-', '&', "\"", "[", "]", "/", "$", "(", ")", "%", ":", "'", '.']])

    # Replace all special symbols with spaces around them
    sentence = re.sub(rf'({special_symbols_regex})', r' \1 ', sentence)

    # Remove extra whitespaces
    sentence = re.sub(r'\s+', ' ', sentence).strip()

    upper = sentence

    # Convert the sentence to lowercase
    sentence = sentence.lower()

    # Loop through the sentence and convert special symbols to tokens [PMS], [PMC], or [PMP]
    new_sentence = ""
    i = 0
    while i < len(sentence):
        if any(sentence[i:].startswith(symbol) for symbol in special_symbols):
            # Check for ellipsis and replace with '[PMS]'
            if i + 2 < len(sentence) and sentence[i:i + 3] == '...':
                new_sentence += '[PMS]'
                i += 3
            # Check for single special symbols
            elif i + 1 == len(sentence):
                new_sentence += symbol2token(sentence[i])
                break
            elif sentence[i + 1] == ' ' and i == 0:
                new_sentence += symbol2token(sentence[i])
                i += 1
            elif sentence[i - 1] == ' ' and sentence[i + 1] == ' ':
                new_sentence += symbol2token(sentence[i])
                i += 1
            elif sentence[i - 1] != ' ':
                new_sentence += ''
            else:
                word_after_symbol = ""
                while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
                        sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
                    word_after_symbol += sentence[i + 1]
                    i += 1
                new_sentence += word_after_symbol
        # Check for special symbols at the start of the sentence
        elif any(sentence[i:].startswith(symbol) for symbol in special_symbols):
            if i + 1 < len(sentence) and (sentence[i + 1] == ' ' and sentence[i - 1] != ' '):
                new_sentence += '[PMS] '
                i += 1
            elif i + 1 == len(sentence):
                new_sentence += '[PMS] '
                break
            else:
                word_after_symbol = ""
                while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
                        sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
                    word_after_symbol += sentence[i + 1]
                    i += 1
                new_sentence += word_after_symbol
        else:
            new_sentence += sentence[i]
        i += 1

    print("Sentence after:", new_sentence.split())
    print("---")

    return new_sentence, upper


def preprocess_sentence(tagged_sentence):
    # Remove the line identifier (e.g., SNT.80188.3)
    sentence = re.sub(r'SNT\.\d+\.\d+\s+', '', tagged_sentence)
    special_symbols = ['-', '&', ",", "\"", "[", "]", "/", "$", "(", ")", "%", ":", "'", '.']
    # Construct the regex pattern for extracting words inside <TAGS> including special symbols
    special_symbols_regex = '|'.join([re.escape(sym) for sym in special_symbols])
    regex_pattern = r'<(?:[^<>]+? )?([a-zA-Z0-9.,&"!?{}]+)>'.format(special_symbols_regex)
    words = re.findall(regex_pattern, tagged_sentence)

    # Join the words to form a sentence
    sentence = ' '.join(words)
    sentence = sentence.lower()


    # print("---")
    # print("Sentence before:", sentence)

    # Loop through the sentence and convert hyphen to '[PMP]' if the next character is a space
    new_sentence = ""
    i = 0
    # print("Length: ", len(sentence))
    while i < len(sentence):
        # print(f"{i+1} == {len(sentence)}: {sentence[i]}")

        if any(sentence[i:].startswith(symbol) for symbol in special_symbols):
            if i + 2 < len(sentence) and sentence[i:i + 3] == '...':
                # Ellipsis found, replace with '[PMS]'
                new_sentence += symbol2token(sentence[i])
                i += 3
            elif i + 1 == len(sentence):
                new_sentence += symbol2token(sentence[i])
                break
            elif sentence[i + 1] == ' ' and i == 0:
                new_sentence += symbol2token(sentence[i])
                i += 1
            elif sentence[i - 1] == ' ' and sentence[i + 1] == ' ':
                new_sentence += symbol2token(sentence[i])
                i += 1
            elif sentence[i - 1] != ' ':
                new_sentence += ''
            else:
                word_after_symbol = ""
                while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
                        sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
                    word_after_symbol += sentence[i + 1]
                    i += 1
                new_sentence += word_after_symbol
        elif any(sentence[i:].startswith(symbol) for symbol in special_symbols):
            if i + 1 < len(sentence) and (sentence[i + 1] == ' ' and sentence[i - 1] != ' '):
                new_sentence += '[PMS] '
                i += 1
            elif i + 1 == len(sentence):
                new_sentence += '[PMS] '
                break
            else:
                word_after_symbol = ""
                while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
                        sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
                    word_after_symbol += sentence[i + 1]
                    i += 1
                new_sentence += word_after_symbol
        else:
            new_sentence += sentence[i]
        i += 1

    print("Sentence after:", new_sentence.split())
    print("---")

    return new_sentence
def extract_tags(input_sentence):
    tags = re.findall(r'<([A-Z_]+)\s.*?>', input_sentence)
    return tags

def align_tokenization(sentence, tags):

    print("Sentence \n: ", sentence)
    sentence = sentence.split()
    print("Sentence Split\n: ", sentence)

    tokenized_sentence = tokenizer.tokenize(' '.join(sentence))
    # tokenized_sentence_string = " ".join(tokenized_sentence)
    # print("ID2Token_string\n: ", tokenized_sentence_string)

    aligned_tagging = []
    current_word = ''
    index = 0  # index of the current word in the sentence and tagging

    for token in tokenized_sentence:
        current_word += re.sub(r'^##', '', token)
        print("Current word after replacing ##: ", current_word)
        print("sentence[index]: ", sentence[index])

        if sentence[index] == current_word:  # if we completed a word
            print("completed a word: ", current_word)
            current_word = ''
            aligned_tagging.append(tags[index])
            index += 1
        else:  # otherwise insert padding
            print("incomplete word: ", current_word)
            aligned_tagging.append(0)

        print("---")

    decoded_tags = [list(pos_tag_mapping.keys())[list(pos_tag_mapping.values()).index(tag_id)] for tag_id in
                    aligned_tagging]
    print("Tokenized Sentence\n: ", tokenized_sentence)
    print("Tags\n: ", decoded_tags)

    assert len(tokenized_sentence) == len(aligned_tagging)

    aligned_tagging = [0] + aligned_tagging
    return tokenized_sentence, aligned_tagging


def process_tagged_sentence(tagged_sentence):
    # print(tagged_sentence)

    # Preprocess the input tagged sentence and extract the words and tags
    sentence = preprocess_sentence(tagged_sentence)
    tags = extract_tags(tagged_sentence) # returns the tags (eto ilagay mo sa tags.txt)


    encoded_tags = [pos_tag_mapping[tag] for tag in tags]

    # Align tokens by adding padding if needed
    tokenized_sentence, encoded_tags = align_tokenization(sentence, encoded_tags)
    encoded_sentence = tokenizer(sentence, padding="max_length" ,truncation=True, max_length=128)

    # Create attention mask (1 for real tokens, 0 for padding)
    attention_mask = [1] * len(encoded_sentence['input_ids'])
    print("len(encoded_sentence['input_ids']):", len(encoded_sentence['input_ids']))
    while len(encoded_sentence['input_ids']) < 128:
        encoded_sentence['input_ids'].append(0)  # Pad with zeros
        attention_mask.append(0)  # Pad attention mask


    while len(encoded_tags) < 128:
        encoded_tags.append(0)  # Pad with the ID of '[PAD]'

    encoded_sentence['encoded_tags'] = encoded_tags

    decoded_sentence = tokenizer.convert_ids_to_tokens(encoded_sentence['input_ids'], skip_special_tokens=False)

    decoded_tags = [list(pos_tag_mapping.keys())[list(pos_tag_mapping.values()).index(tag_id)] for tag_id in
                    encoded_tags]

    #
    word_tag_pairs = list(zip(decoded_sentence, decoded_tags))
    print(encoded_sentence)
    print("Sentence:", decoded_sentence)
    print("Tags:", decoded_tags)
    print("Decoded Sentence and Tags:", word_tag_pairs)
    print("---")

    return encoded_sentence

import torch
import torch.nn.functional as F

def tag_sentence(input_sentence):
    # Preprocess the input tagged sentence and extract the words and tags
    sentence, upper = preprocess_untagged_sentence(input_sentence)

    # Tokenize the sentence and decode it
    encoded_sentence = tokenizer(sentence, padding="max_length", truncation=True, max_length=128, return_tensors="pt")

    # Pass the encoded sentence to the model to get the predicted logits
    with torch.no_grad():
        model_output = model(**encoded_sentence)

    # Get the logits and apply softmax to convert them into probabilities
    logits = model_output.logits
    probabilities = F.softmax(logits, dim=-1)

    # Get the predicted tag for each token in the sentence
    predicted_tags = torch.argmax(probabilities, dim=-1)

    # Convert the predicted tags to their corresponding labels using id2label
    labels = [id2label[tag.item()] for tag in predicted_tags[0] if id2label[tag.item()] != '[PAD]']

    return labels

# Example usage:
test_sentence = 'Ang bahay ay maganda na para bang may kumikislap sa bintana .'

def predict_tags(test_sentence):

    sentence, upper = preprocess_untagged_sentence(test_sentence)
    words_list = upper.split()
    print("Words: ", words_list)
    predicted_tags = tag_sentence(test_sentence)
    print(predicted_tags)

    pairs = list(zip(words_list, predicted_tags))
    return pairs

predict_tags(test_sentence)

def get_readme():
    return """

    ----

    <!-- ---- -->

    # BERT Tagalog Part of Speech Tagger (BERTTPOST)

    ## πŸ‘₯ Developed by
    - Saya-ang, Kenth G. ([@syke9p3](https://github.com/syke9p3))
    - Gozum, Denise Julianne S. ([@Xenoxianne](https://github.com/Xenoxianne))
    - Hamor, Mary Grizelle D. ([@mnemoria](https://github.com/mnemoria))
    - Mabansag, Ria Karen B. ([@riavx](https://github.com/riavx))


    ## πŸ“‹ Model Details

    <!-- Provide a longer summary of what this model is. -->
    ### Model Description

    - **Model type:** BERT Tagalog Base Uncased
    - **Languages (NLP):** Tagalog, Filipino
    - **Finetuned from model**: [GKLMIP/bert-tagalog-base-uncased](https://huggingface.co/GKLMIP/bert-tagalog-base-uncased)

    ### Dataset

    1000 annotated sentences from Sagum et. al.'s Tagalog Corpora based on MGNN Tagset convention.

    | Dataset        | Number of Sentences | Percentage |
    |----------------|-----------------|------------|
    | Training Set   | 800           | 80%        |
    | Testing Set    | 200             | 20%        |

    ### Preprocessing
    A corpus was used containing tagged sentences in Tagalog language. The dataset comprises sentences with each word annotated with its corresponding POS tag in the format of ```<TAG word>```. To prepare the corpus for training, the following preprocessing steps were performed:
    1. **Removal of Line Identifier**: the line identifier, such as ```SNT.108970.2066```, was removed from each tagged sentence.
    2. **Symbol Conversion**: for the BERT model, certain special symbols like hyphens, quotes, commas, etc., were converted into special tokens (```PMP```, ```PMS```, ```PMC```) to preserve their meaning during tokenization.
    3. **Alignment of Tokenization**: the BERT tokenized words and their corresponding POS tags were aligned to ensure that the tokenization and tagging are consistent.


    ### Training

    This model was trained using PyTorch library with the following hyperparameters set:

    | **Hyperparamter**   |  **Value** |   
    |---------------- |---------
    | Batch Size      |  8 |
    | Training Epoch  |  5 |
    | Learning-rate   |  2e-5 |
    | Optimizer       |  Adam |



    ## βš’οΈ Languages and Technologies

    [![Hugging Face](https://img.shields.io/badge/Hugging%20Face%20-FFD21E?style=for-the-badge&logo=huggingface&logoColor=black)](https://jupyter.org/)

    [![Python](https://img.shields.io/badge/Python-F7CC42?style=for-the-badge&logo=python&logoColor=black)](https://www.python.org/)

    [![Gradio](https://img.shields.io/badge/Gradio-F08705?style=for-the-badge&logo=gradio&logoColor=white)](https://pytorch.org/)

    [![Jupyter Notebook](https://img.shields.io/badge/Jupyter%20Notebook-F37626?style=for-the-badge&logo=jupyter&logoColor=white)](https://jupyter.org/)

    [![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?style=for-the-badge&logo=pytorch&logoColor=white)](https://pytorch.org/)





    ## 🏷️ Tags

    | Part of Speech                                 | Tags |
    |-----------------------------------------------|------|
    | **Noun**                                       | ![NNC](https://img.shields.io/badge/NNC-84CC16?style=for-the-badge&logoColor=white)  |
    | Common Noun                                   | NNC  |
    | Proper Noun                                   | NNP  |
    | Proper Noun Abbreviation                      | NNPA |
    | Common Noun Abbreviation                      | NNCA |
    | **Pronoun**                                       | ![PR](https://img.shields.io/badge/PR-0D9488?style=for-the-badge&logoColor=white)     |
    | as Subject (Palagyo)/Personal Pronouns Singular | PRS  |
    | Personal Pronouns                             | PRP  |
    | Possessive Subject (Paari)                    | PRSP |
    | Pointing to an Object Demonstrative/(Paturol/Pamatlig) | PRO  |
    | Question/Interrogative (Pananong)/Singular    | PRQ  |
    | Question/Interrogative Plural                 | PRQP |
    | Location (Panlunan)                           | PRL  |
    | Comparison (Panulad)                          | PRC  |
    | Found (Pahimaton)                             | PRF  |
    | Indefinite                                    | PRI  |
    | **Determiner**      | ![DT](https://img.shields.io/badge/DT-16A34A?style=for-the-badge&logoColor=white)      |
    | Determiner (Pantukoy) for Common Noun Plural  | DTC  |
    | Determiner (Pantukoy) for Proper Noun         | DTP  |
    | Determiner (Pantukoy) for Proper Noun Plural  | DTPP |
    | **Conjunctions (Pang-ugnay)**                     | ![CC](https://img.shields.io/badge/CC-16A34ADB2777?style=for-the-badge&logoColor=white)   |
    | **Lexical Marker**                                | ![LM](https://img.shields.io/badge/LM-EAB308?style=for-the-badge&logoColor=white)     |
    | Ligatures (Pang-angkop)                       | CCP  |
    | Preposition (Pang-ukol)                       | CCU  |
    | **Verb (Pandiwa)**                                | ![VB](https://img.shields.io/badge/VB-2563EB?style=for-the-badge&logoColor=white)     |
    | Neutral/Infinitive                            | VBW  |
    | Auxiliary, Modal/Pseudo-verbs                 | VBS  |
    | Existential                                  | VBH  |
    | Non-existential                              | VBN  |
    | Time Past (Perfective)                       | VBTS |
    | Time Present (Imperfective)                  | VBTR |
    | Time Future (Contemplative)                  | VBTF |
    | Recent past                                  | VBTP |
    | Actor Focus                                  | VBAF |
    | Object/Goal Focus                            | VBOF |
    | Benefactive Focus                            | VBOB |
    | Locative Focus                               | VBOL |
    | Instrumental Focus                           | VBOI |
    | Referential/Measurement Focus                | VBRF |
    | **Adjective**                     | ![JJ](https://img.shields.io/badge/JJ-0D9488?style=for-the-badge&logoColor=white)    |
    | Describing (Panlarawan)                      | JJD  |
    | Used for Comparison (same level) (Pahambing Magkatulad) | JJC  |
    | Comparison Comparative (more) (Palamang)     | JJCC |
    | Comparison Superlative (most) (Pasukdol)      | JJCS |
    | Comparison Negation (not quite) (Di-Magkatulad) | JJCN |
    | Describing Number (Pamilang)                 | JJN  |
    | **Adverb (Pang-Abay)**                           | ![RB](https://img.shields.io/badge/RB-DB2777?style=for-the-badge&logoColor=white)    |
    | Describing β€œHow” (Pamaraan)                  | RBD  |
    | Number (Panggaano/Panukat)                   | RBN  |
    | Conditional (Kondisyunal)                   | RBK  |
    | Causative (Pananhi)                          | RBP  |
    | Benefactive (Benepaktibo)                    | RBB  |
    | Referential (Pangkaukulan)                   | RBR  |
    | Question (Pananong)                          | RBQ  |
    | Agree (Panang-ayon)                          | RBT  |
    | Disagree (Pananggi)                          | RBF  |
    | Frequency (Pamanahon)                        | RBW  |
    | Possibility (Pang-agam)                      | RBM  |
    | Place (Panlunan)                             | RBL  |
    | Enclitics (Paningit)                         | RBI  |
    | Interjections (Sambitla)                     | RBJ  |
    | Social Formula (Pormularyong Panlipunan)     | RBS  |
    |**Cardinal Number (Bilang)**                    | ![CD](https://img.shields.io/badge/CD-2563EB?style=for-the-badge&logoColor=white)    |
    | Digit, Rank, Count                           | CDB  |
    | **Topicless (Walang Paksa)**                     | ![TS](https://img.shields.io/badge/TS-0891B2?style=for-the-badge&logoColor=white)    |
    | **Foreign Words**                               | ![FW](https://img.shields.io/badge/FW-EA580C?style=for-the-badge&logoColor=white)    |
    | **Punctuation (Pananda)**                        | ![PM](https://img.shields.io/badge/PM-DB2777?style=for-the-badge&logoColor=white)    |
    | Period                                       | PMP  |
    | Exclamation Point                            | PME  |
    | Question Mark                                | PMQ  |
    | Comma                                        | PMC  |
    | Semi-colon                                   | PMSC |
    | Other Symbols                                      | PMS  |
        
    ## Bias, Risks, and Limitations

    This model has not been fully tested so please use with caution.

    """


tagger = gr.Interface(
    predict_tags,
    gr.Textbox(placeholder="Enter sentence here..."),
    ["highlight"],
    title="BERT Filipino Part of Speech Tagger",
    description="Enter a text in Tagalog to classify the tags for each word. Each word to tag needs to be space separated.",
    examples=[
        ["Ang bahay ay lumiliwanag na para bang may kumikislap sa bintana"],
        ["Naisip ko na kumain na lang tayo sa pinakasikat na restaurant sa Manila ."],
    ],
    article=get_readme()
)

tagger.launch()