File size: 24,689 Bytes
1605685 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 43a324f cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c cc0b92d 5ab279c 1605685 0ad0d6d 1605685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import re
from transformers import AutoTokenizer, AutoModelForTokenClassification
import gradio as gr
# # Load the trained model and tokenizer
# model_checkpoint = "BERTPOS"
# model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
# tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
# load model from Huggingface
tokenizer = AutoTokenizer.from_pretrained("syke9p3/bert-tagalog-base-uncased-pos-tagger")
model = AutoModelForTokenClassification.from_pretrained("syke9p3/bert-tagalog-base-uncased-pos-tagger")
pos_tag_mapping = {
'[PAD]': 0,
'NNC': 1,
'NNP': 2,
'NNPA': 3,
'NNCA': 4,
'PR': 5,
'PRS': 6,
'PRP': 7,
'PRSP': 8,
'PRO': 9,
'PRQ': 10,
'PRQP': 11,
'PRL': 12,
'PRC': 13,
'PRF': 14,
'PRI': 15,
'DT': 16,
'DTC': 17,
'DTP': 18,
'DTPP': 19,
'LM': 20,
'CC': 21,
'CCT': 22,
'CCR': 23,
'CCB': 24,
'CCA': 25,
'PM': 26,
'PMP': 27,
'PME': 28,
'PMQ': 29,
'PMC': 30,
'PMSC': 31,
'PMS': 32,
'VB': 33,
'VBW': 34,
'VBS': 35,
'VBN': 36,
'VBTS': 37,
'VBTR': 38,
'VBTF': 39,
'VBTP': 40,
'VBAF': 41,
'VBOF': 42,
'VBOB': 43,
'VBOL': 44,
'VBOI': 45,
'VBRF': 46,
'JJ': 47,
'JJD': 48,
'JJC': 49,
'JJCC': 50,
'JJCS': 51,
'JJCN': 52,
'JJCF': 53,
'JJCB': 54,
'JJT': 55,
'RB': 56,
'RBD': 57,
'RBN': 58,
'RBK': 59,
'RBP': 60,
'RBB': 61,
'RBR': 62,
'RBQ': 63,
'RBT': 64,
'RBF': 65,
'RBW': 66,
'RBM': 67,
'RBL': 68,
'RBI': 69,
'RBS': 70,
'RBJ': 71,
'RBY': 72,
'RBLI': 73,
'TS': 74,
'FW': 75,
'CD': 76,
'CCB_CCP': 77,
'CCR_CCA': 78,
'CCR_CCB': 79,
'CCR_CCP': 80,
'CCR_LM': 81,
'CCT_CCA': 82,
'CCT_CCP': 83,
'CCT_LM': 84,
'CCU_DTP': 85,
'CDB_CCA': 86,
'CDB_CCP': 87,
'CDB_LM': 88,
'CDB_NNC': 89,
'CDB_NNC_CCP': 90,
'JJCC_CCP': 91,
'JJCC_JJD': 92,
'JJCN_CCP': 93,
'JJCN_LM': 94,
'JJCS_CCB': 95,
'JJCS_CCP': 96,
'JJCS_JJC': 97,
'JJCS_JJC_CCP': 98,
'JJCS_JJD': 99,
'[UNK]': 100,
'[CLS]': 101,
'[SEP]': 102,
'JJCS_JJN': 103,
'JJCS_JJN_CCP': 104,
'JJCS_RBF': 105,
'JJCS_VBAF': 106,
'JJCS_VBAF_CCP': 107,
'JJCS_VBN_CCP': 108,
'JJCS_VBOF': 109,
'JJCS_VBOF_CCP': 110,
'JJCS_VBN': 111,
'RBQ_CCP': 112,
'JJC_CCB': 113,
'JJC_CCP': 114,
'JJC_PRL': 115,
'JJD_CCA': 116,
'JJD_CCB': 117,
'JJD_CCP': 118,
'JJD_CCT': 119,
'JJD_NNC': 120,
'JJD_NNP': 121,
'JJN_CCA': 122,
'JJN_CCB': 123,
'JJN_CCP': 124,
'JJN_NNC': 125,
'JJN_NNC_CCP': 126,
'JJD_NNC_CCP': 127,
'NNC_CCA': 128,
'NNC_CCB': 129,
'NNC_CCP': 130,
'NNC_NNC_CCP': 131,
'NN': 132,
'JJN': 133,
'NNP_CCA': 134,
'NNP_CCP': 135,
'NNP_NNP': 136,
'PRC_CCB': 137,
'PRC_CCP': 138,
'PRF_CCP': 139,
'PRQ_CCP': 140,
'PRQ_LM': 141,
'PRS_CCB': 142,
'PRS_CCP': 143,
'PRSP_CCP': 144,
'PRSP_CCP_NNP': 145,
'PRL_CCP': 146,
'PRL_LM': 147,
'PRO_CCB': 148,
'PRO_CCP': 149,
'VBS_CCP': 150,
'VBTR_CCP': 151,
'VBTS_CCA': 152,
'VBTS_CCP': 153,
'VBTS_JJD': 154,
'VBTS_LM': 155,
'VBAF_CCP': 156,
'VBOB_CCP': 157,
'VBOF_CCP': 158,
'VBOF_CCP_NNP': 159,
'VBRF_CCP': 160,
'CCP': 161,
'CDB': 162,
'RBW_CCP': 163,
'RBD_CCP': 164,
'DTCP': 165,
'VBH': 166,
'VBTS_VBOF': 167,
'PRI_CCP': 168,
'VBTR_VBAF_CCP': 169,
'DQL': 170,
'DQR': 171,
'RBT_CCP': 172,
'VBW_CCP': 173,
'RBI_CCP': 174,
'VBN_CCP': 175,
'VBTR_VBAF': 176,
'VBTF_CCP': 177,
'JJCS_JJD_NNC': 178,
'CCU': 179,
'RBL_CCP': 180,
'VBTR_VBRF_CCP': 181,
'PRP_CCP': 182,
'VBTR_VBRF': 183,
'VBH_CCP': 184,
'VBTS_VBAF': 185,
'VBTF_VBOF': 186,
'VBTR_VBOF': 187,
'VBTF_VBAF': 188,
'JJCS_JJD_CCB': 189,
'JJCS_JJD_CCP': 190,
'RBM_CCP': 191,
'NNCS': 192,
'PRI_CCB': 193,
'NNA': 194,
'VBTR_VBOB': 195,
'DC': 196,
'JJD_CP': 197,
'NC': 198,
'NC_CCP': 199,
'VBO': 200,
'JJD_CC': 201,
'VBF': 202,
'CP': 203,
'NP': 204,
'N': 205,
'F': 206,
'CT': 207,
'MS': 208,
'BTF': 209,
'CA': 210,
'VBOF_RBR': 211,
'DP': 212,
}
num_labels = len(pos_tag_mapping)
id2label = {idx: tag for tag, idx in pos_tag_mapping.items()}
label2id = {tag: idx for tag, idx in pos_tag_mapping.items()}
special_symbols = ['-', '&', "\"", "[", "]", "/", "$", "(", ")", "%", ":", "'", '.', '?', ',']
def symbol2token(symbol):
# Check if the symbol is a comma
if symbol == ',':
return '[PMC] '
elif symbol == '.':
return '[PMP] '
# Check if the symbol is in the list of special symbols
elif symbol in special_symbols:
return '[PMS] '
# If the symbol is not a comma or in the special symbols list, keep it as it is
return symbol
def preprocess_untagged_sentence(sentence):
# Define regex pattern to capture all special symbols
special_symbols_regex = '|'.join([re.escape(sym) for sym in ['-', '&', "\"", "[", "]", "/", "$", "(", ")", "%", ":", "'", '.']])
# Replace all special symbols with spaces around them
sentence = re.sub(rf'({special_symbols_regex})', r' \1 ', sentence)
# Remove extra whitespaces
sentence = re.sub(r'\s+', ' ', sentence).strip()
upper = sentence
# Convert the sentence to lowercase
sentence = sentence.lower()
# Loop through the sentence and convert special symbols to tokens [PMS], [PMC], or [PMP]
new_sentence = ""
i = 0
while i < len(sentence):
if any(sentence[i:].startswith(symbol) for symbol in special_symbols):
# Check for ellipsis and replace with '[PMS]'
if i + 2 < len(sentence) and sentence[i:i + 3] == '...':
new_sentence += '[PMS]'
i += 3
# Check for single special symbols
elif i + 1 == len(sentence):
new_sentence += symbol2token(sentence[i])
break
elif sentence[i + 1] == ' ' and i == 0:
new_sentence += symbol2token(sentence[i])
i += 1
elif sentence[i - 1] == ' ' and sentence[i + 1] == ' ':
new_sentence += symbol2token(sentence[i])
i += 1
elif sentence[i - 1] != ' ':
new_sentence += ''
else:
word_after_symbol = ""
while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
word_after_symbol += sentence[i + 1]
i += 1
new_sentence += word_after_symbol
# Check for special symbols at the start of the sentence
elif any(sentence[i:].startswith(symbol) for symbol in special_symbols):
if i + 1 < len(sentence) and (sentence[i + 1] == ' ' and sentence[i - 1] != ' '):
new_sentence += '[PMS] '
i += 1
elif i + 1 == len(sentence):
new_sentence += '[PMS] '
break
else:
word_after_symbol = ""
while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
word_after_symbol += sentence[i + 1]
i += 1
new_sentence += word_after_symbol
else:
new_sentence += sentence[i]
i += 1
print("Sentence after:", new_sentence.split())
print("---")
return new_sentence, upper
def preprocess_sentence(tagged_sentence):
# Remove the line identifier (e.g., SNT.80188.3)
sentence = re.sub(r'SNT\.\d+\.\d+\s+', '', tagged_sentence)
special_symbols = ['-', '&', ",", "\"", "[", "]", "/", "$", "(", ")", "%", ":", "'", '.']
# Construct the regex pattern for extracting words inside <TAGS> including special symbols
special_symbols_regex = '|'.join([re.escape(sym) for sym in special_symbols])
regex_pattern = r'<(?:[^<>]+? )?([a-zA-Z0-9.,&"!?{}]+)>'.format(special_symbols_regex)
words = re.findall(regex_pattern, tagged_sentence)
# Join the words to form a sentence
sentence = ' '.join(words)
sentence = sentence.lower()
# print("---")
# print("Sentence before:", sentence)
# Loop through the sentence and convert hyphen to '[PMP]' if the next character is a space
new_sentence = ""
i = 0
# print("Length: ", len(sentence))
while i < len(sentence):
# print(f"{i+1} == {len(sentence)}: {sentence[i]}")
if any(sentence[i:].startswith(symbol) for symbol in special_symbols):
if i + 2 < len(sentence) and sentence[i:i + 3] == '...':
# Ellipsis found, replace with '[PMS]'
new_sentence += symbol2token(sentence[i])
i += 3
elif i + 1 == len(sentence):
new_sentence += symbol2token(sentence[i])
break
elif sentence[i + 1] == ' ' and i == 0:
new_sentence += symbol2token(sentence[i])
i += 1
elif sentence[i - 1] == ' ' and sentence[i + 1] == ' ':
new_sentence += symbol2token(sentence[i])
i += 1
elif sentence[i - 1] != ' ':
new_sentence += ''
else:
word_after_symbol = ""
while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
word_after_symbol += sentence[i + 1]
i += 1
new_sentence += word_after_symbol
elif any(sentence[i:].startswith(symbol) for symbol in special_symbols):
if i + 1 < len(sentence) and (sentence[i + 1] == ' ' and sentence[i - 1] != ' '):
new_sentence += '[PMS] '
i += 1
elif i + 1 == len(sentence):
new_sentence += '[PMS] '
break
else:
word_after_symbol = ""
while i + 1 < len(sentence) and sentence[i + 1] != ' ' and not any(
sentence[i + 1:].startswith(symbol) for symbol in special_symbols):
word_after_symbol += sentence[i + 1]
i += 1
new_sentence += word_after_symbol
else:
new_sentence += sentence[i]
i += 1
print("Sentence after:", new_sentence.split())
print("---")
return new_sentence
def extract_tags(input_sentence):
tags = re.findall(r'<([A-Z_]+)\s.*?>', input_sentence)
return tags
def align_tokenization(sentence, tags):
print("Sentence \n: ", sentence)
sentence = sentence.split()
print("Sentence Split\n: ", sentence)
tokenized_sentence = tokenizer.tokenize(' '.join(sentence))
# tokenized_sentence_string = " ".join(tokenized_sentence)
# print("ID2Token_string\n: ", tokenized_sentence_string)
aligned_tagging = []
current_word = ''
index = 0 # index of the current word in the sentence and tagging
for token in tokenized_sentence:
current_word += re.sub(r'^##', '', token)
print("Current word after replacing ##: ", current_word)
print("sentence[index]: ", sentence[index])
if sentence[index] == current_word: # if we completed a word
print("completed a word: ", current_word)
current_word = ''
aligned_tagging.append(tags[index])
index += 1
else: # otherwise insert padding
print("incomplete word: ", current_word)
aligned_tagging.append(0)
print("---")
decoded_tags = [list(pos_tag_mapping.keys())[list(pos_tag_mapping.values()).index(tag_id)] for tag_id in
aligned_tagging]
print("Tokenized Sentence\n: ", tokenized_sentence)
print("Tags\n: ", decoded_tags)
assert len(tokenized_sentence) == len(aligned_tagging)
aligned_tagging = [0] + aligned_tagging
return tokenized_sentence, aligned_tagging
def process_tagged_sentence(tagged_sentence):
# print(tagged_sentence)
# Preprocess the input tagged sentence and extract the words and tags
sentence = preprocess_sentence(tagged_sentence)
tags = extract_tags(tagged_sentence) # returns the tags (eto ilagay mo sa tags.txt)
encoded_tags = [pos_tag_mapping[tag] for tag in tags]
# Align tokens by adding padding if needed
tokenized_sentence, encoded_tags = align_tokenization(sentence, encoded_tags)
encoded_sentence = tokenizer(sentence, padding="max_length" ,truncation=True, max_length=128)
# Create attention mask (1 for real tokens, 0 for padding)
attention_mask = [1] * len(encoded_sentence['input_ids'])
print("len(encoded_sentence['input_ids']):", len(encoded_sentence['input_ids']))
while len(encoded_sentence['input_ids']) < 128:
encoded_sentence['input_ids'].append(0) # Pad with zeros
attention_mask.append(0) # Pad attention mask
while len(encoded_tags) < 128:
encoded_tags.append(0) # Pad with the ID of '[PAD]'
encoded_sentence['encoded_tags'] = encoded_tags
decoded_sentence = tokenizer.convert_ids_to_tokens(encoded_sentence['input_ids'], skip_special_tokens=False)
decoded_tags = [list(pos_tag_mapping.keys())[list(pos_tag_mapping.values()).index(tag_id)] for tag_id in
encoded_tags]
#
word_tag_pairs = list(zip(decoded_sentence, decoded_tags))
print(encoded_sentence)
print("Sentence:", decoded_sentence)
print("Tags:", decoded_tags)
print("Decoded Sentence and Tags:", word_tag_pairs)
print("---")
return encoded_sentence
import torch
import torch.nn.functional as F
def tag_sentence(input_sentence):
# Preprocess the input tagged sentence and extract the words and tags
sentence, upper = preprocess_untagged_sentence(input_sentence)
# Tokenize the sentence and decode it
encoded_sentence = tokenizer(sentence, padding="max_length", truncation=True, max_length=128, return_tensors="pt")
# Pass the encoded sentence to the model to get the predicted logits
with torch.no_grad():
model_output = model(**encoded_sentence)
# Get the logits and apply softmax to convert them into probabilities
logits = model_output.logits
probabilities = F.softmax(logits, dim=-1)
# Get the predicted tag for each token in the sentence
predicted_tags = torch.argmax(probabilities, dim=-1)
# Convert the predicted tags to their corresponding labels using id2label
labels = [id2label[tag.item()] for tag in predicted_tags[0] if id2label[tag.item()] != '[PAD]']
return labels
# Example usage:
test_sentence = 'Ang bahay ay maganda na para bang may kumikislap sa bintana .'
def predict_tags(test_sentence):
sentence, upper = preprocess_untagged_sentence(test_sentence)
words_list = upper.split()
print("Words: ", words_list)
predicted_tags = tag_sentence(test_sentence)
print(predicted_tags)
pairs = list(zip(words_list, predicted_tags))
return pairs
predict_tags(test_sentence)
def get_readme():
return """
----
<!-- ---- -->
# BERT Tagalog Part of Speech Tagger (BERTTPOST)
## π₯ Developed by
- Saya-ang, Kenth G. ([@syke9p3](https://github.com/syke9p3))
- Gozum, Denise Julianne S. ([@Xenoxianne](https://github.com/Xenoxianne))
- Hamor, Mary Grizelle D. ([@mnemoria](https://github.com/mnemoria))
- Mabansag, Ria Karen B. ([@riavx](https://github.com/riavx))
## π Model Details
<!-- Provide a longer summary of what this model is. -->
### Model Description
- **Model type:** BERT Tagalog Base Uncased
- **Languages (NLP):** Tagalog, Filipino
- **Finetuned from model**: [GKLMIP/bert-tagalog-base-uncased](https://huggingface.co/GKLMIP/bert-tagalog-base-uncased)
### Dataset
1000 annotated sentences from Sagum et. al.'s Tagalog Corpora based on MGNN Tagset convention.
| Dataset | Number of Sentences | Percentage |
|----------------|-----------------|------------|
| Training Set | 800 | 80% |
| Testing Set | 200 | 20% |
### Preprocessing
A corpus was used containing tagged sentences in Tagalog language. The dataset comprises sentences with each word annotated with its corresponding POS tag in the format of ```<TAG word>```. To prepare the corpus for training, the following preprocessing steps were performed:
1. **Removal of Line Identifier**: the line identifier, such as ```SNT.108970.2066```, was removed from each tagged sentence.
2. **Symbol Conversion**: for the BERT model, certain special symbols like hyphens, quotes, commas, etc., were converted into special tokens (```PMP```, ```PMS```, ```PMC```) to preserve their meaning during tokenization.
3. **Alignment of Tokenization**: the BERT tokenized words and their corresponding POS tags were aligned to ensure that the tokenization and tagging are consistent.
### Training
This model was trained using PyTorch library with the following hyperparameters set:
| **Hyperparamter** | **Value** |
|---------------- |---------
| Batch Size | 8 |
| Training Epoch | 5 |
| Learning-rate | 2e-5 |
| Optimizer | Adam |
## βοΈ Languages and Technologies
[](https://jupyter.org/)
[](https://www.python.org/)
[](https://pytorch.org/)
[](https://jupyter.org/)
[](https://pytorch.org/)
## π·οΈ Tags
| Part of Speech | Tags |
|-----------------------------------------------|------|
| **Noun** |  |
| Common Noun | NNC |
| Proper Noun | NNP |
| Proper Noun Abbreviation | NNPA |
| Common Noun Abbreviation | NNCA |
| **Pronoun** |  |
| as Subject (Palagyo)/Personal Pronouns Singular | PRS |
| Personal Pronouns | PRP |
| Possessive Subject (Paari) | PRSP |
| Pointing to an Object Demonstrative/(Paturol/Pamatlig) | PRO |
| Question/Interrogative (Pananong)/Singular | PRQ |
| Question/Interrogative Plural | PRQP |
| Location (Panlunan) | PRL |
| Comparison (Panulad) | PRC |
| Found (Pahimaton) | PRF |
| Indefinite | PRI |
| **Determiner** |  |
| Determiner (Pantukoy) for Common Noun Plural | DTC |
| Determiner (Pantukoy) for Proper Noun | DTP |
| Determiner (Pantukoy) for Proper Noun Plural | DTPP |
| **Conjunctions (Pang-ugnay)** |  |
| **Lexical Marker** |  |
| Ligatures (Pang-angkop) | CCP |
| Preposition (Pang-ukol) | CCU |
| **Verb (Pandiwa)** |  |
| Neutral/Infinitive | VBW |
| Auxiliary, Modal/Pseudo-verbs | VBS |
| Existential | VBH |
| Non-existential | VBN |
| Time Past (Perfective) | VBTS |
| Time Present (Imperfective) | VBTR |
| Time Future (Contemplative) | VBTF |
| Recent past | VBTP |
| Actor Focus | VBAF |
| Object/Goal Focus | VBOF |
| Benefactive Focus | VBOB |
| Locative Focus | VBOL |
| Instrumental Focus | VBOI |
| Referential/Measurement Focus | VBRF |
| **Adjective** |  |
| Describing (Panlarawan) | JJD |
| Used for Comparison (same level) (Pahambing Magkatulad) | JJC |
| Comparison Comparative (more) (Palamang) | JJCC |
| Comparison Superlative (most) (Pasukdol) | JJCS |
| Comparison Negation (not quite) (Di-Magkatulad) | JJCN |
| Describing Number (Pamilang) | JJN |
| **Adverb (Pang-Abay)** |  |
| Describing βHowβ (Pamaraan) | RBD |
| Number (Panggaano/Panukat) | RBN |
| Conditional (Kondisyunal) | RBK |
| Causative (Pananhi) | RBP |
| Benefactive (Benepaktibo) | RBB |
| Referential (Pangkaukulan) | RBR |
| Question (Pananong) | RBQ |
| Agree (Panang-ayon) | RBT |
| Disagree (Pananggi) | RBF |
| Frequency (Pamanahon) | RBW |
| Possibility (Pang-agam) | RBM |
| Place (Panlunan) | RBL |
| Enclitics (Paningit) | RBI |
| Interjections (Sambitla) | RBJ |
| Social Formula (Pormularyong Panlipunan) | RBS |
|**Cardinal Number (Bilang)** |  |
| Digit, Rank, Count | CDB |
| **Topicless (Walang Paksa)** |  |
| **Foreign Words** |  |
| **Punctuation (Pananda)** |  |
| Period | PMP |
| Exclamation Point | PME |
| Question Mark | PMQ |
| Comma | PMC |
| Semi-colon | PMSC |
| Other Symbols | PMS |
## Bias, Risks, and Limitations
This model has not been fully tested so please use with caution.
"""
tagger = gr.Interface(
predict_tags,
gr.Textbox(placeholder="Enter sentence here..."),
["highlight"],
title="BERT Filipino Part of Speech Tagger",
description="Enter a text in Tagalog to classify the tags for each word. Each word to tag needs to be space separated.",
examples=[
["Ang bahay ay lumiliwanag na para bang may kumikislap sa bintana"],
["Naisip ko na kumain na lang tayo sa pinakasikat na restaurant sa Manila ."],
],
article=get_readme()
)
tagger.launch()
|