Spaces:
Runtime error
Runtime error
File size: 6,744 Bytes
1a0cf07 8ff6b24 1a0cf07 8ff6b24 1a0cf07 8ff6b24 118d254 8ff6b24 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 8ff6b24 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 118d254 dfd0ee3 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 8ff6b24 1a0cf07 7c27c6f 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 7d3f3d3 1a0cf07 8ff6b24 7d3f3d3 1a0cf07 474fca3 1a0cf07 8ff6b24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import json
import logging
import multiprocessing
import os
import gradio as gr
from swiftsage.agents import SwiftSage
from swiftsage.utils.commons import PromptTemplate, api_configs, setup_logging
from pkg_resources import resource_filename
ENGINE = "Together"
# SWIFT_MODEL_ID = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
SWIFT_MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct-Reference"
FEEDBACK_MODEL_ID = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
SAGE_MODEL_ID = "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo"
# ENGINE = "SambaNova"
# SWIFT_MODEL_ID = "Meta-Llama-3.1-8B-Instruct"
# FEEDBACK_MODEL_ID = "Meta-Llama-3.1-70B-Instruct"
# SAGE_MODEL_ID = "Meta-Llama-3.1-405B-Instruct"
def solve_problem(problem, max_iterations, reward_threshold, swift_model_id, sage_model_id, feedback_model_id, use_retrieval, start_with_sage, swift_temperature, swift_top_p, sage_temperature, sage_top_p, feedback_temperature, feedback_top_p):
global ENGINE
# Configuration for each LLM
max_iterations = int(max_iterations)
reward_threshold = int(reward_threshold)
swift_config = {
"model_id": swift_model_id,
"api_config": api_configs[ENGINE],
"temperature": float(swift_temperature),
"top_p": float(swift_top_p),
"max_tokens": 2048,
}
feedback_config = {
"model_id": feedback_model_id,
"api_config": api_configs[ENGINE],
"temperature": float(feedback_temperature),
"top_p": float(feedback_top_p),
"max_tokens": 2048,
}
sage_config = {
"model_id": sage_model_id,
"api_config": api_configs[ENGINE],
"temperature": float(sage_temperature),
"top_p": float(sage_top_p),
"max_tokens": 2048,
}
# specify the path to the prompt templates
# prompt_template_dir = './swiftsage/prompt_templates'
# prompt_template_dir = resource_filename('swiftsage', 'prompt_templates')
# Try multiple locations for the prompt templates
possible_paths = [
resource_filename('swiftsage', 'prompt_templates'),
os.path.join(os.path.dirname(__file__), '..', 'swiftsage', 'prompt_templates'),
os.path.join(os.path.dirname(__file__), 'swiftsage', 'prompt_templates'),
'/app/swiftsage/prompt_templates', # For Docker environments
]
prompt_template_dir = None
for path in possible_paths:
if os.path.exists(path):
prompt_template_dir = path
break
dataset = []
embeddings = [] # TODO: for retrieval augmentation (not implemented yet now)
s2 = SwiftSage(
dataset,
embeddings,
prompt_template_dir,
swift_config,
sage_config,
feedback_config,
use_retrieval=use_retrieval,
start_with_sage=start_with_sage,
)
reasoning, solution, messages = s2.solve(problem, max_iterations, reward_threshold)
solution = solution.replace("Answer (from running the code):\n ", " ")
# generate HTML for the log messages and display them with wrap and a scroll bar and a max height in the code block with log style
log_messages = "<pre style='white-space: pre-wrap; max-height: 500px; overflow-y: scroll;'><code class='log'>" + "\n".join(messages) + "</code></pre>"
return reasoning, solution, log_messages
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# gr.Markdown("## SwiftSage: A Multi-Agent Framework for Reasoning")
# use the html and center the title
gr.HTML("<h1 style='text-align: center;'>SwiftSage: A General Reasoning Framework with Fast and Slow Thinking </h1> ")
gr.HTML("<span>SwiftSage is a multi-agent reasoning framework that combines the strengths of different models for solving complex problems. It uses a Swift model for fast thinking, a Sage model for slow thinking, and a Feedback model for providing feedback and reward. More info is on our Github: <a style='color: gray' href='https://github.com/SwiftSage/SwiftSage'> https://github.com/SwiftSage/SwiftSage </a>. Contact: <a href='https://yuchenlin.xyz/'>Bill Yuchen Lin</a> </span>")
with gr.Row():
swift_model_id = gr.Textbox(label="π Swift Model ID", value=SWIFT_MODEL_ID)
feedback_model_id = gr.Textbox(label="π€ Feedback Model ID", value=FEEDBACK_MODEL_ID)
sage_model_id = gr.Textbox(label="π Sage Model ID", value=SAGE_MODEL_ID)
# the following two should have a smaller width
with gr.Accordion(label="βοΈ Advanced Options", open=False):
with gr.Row():
with gr.Column():
max_iterations = gr.Textbox(label="Max Iterations", value="5")
reward_threshold = gr.Textbox(label="feedback Threshold", value="8")
# TODO: add top-p and temperature for each module for controlling
with gr.Column():
top_p_swift = gr.Textbox(label="Top-p for Swift", value="0.9")
temperature_swift = gr.Textbox(label="Temperature for Swift", value="0.7")
with gr.Column():
top_p_sage = gr.Textbox(label="Top-p for Sage", value="0.9")
temperature_sage = gr.Textbox(label="Temperature for Sage", value="0.7")
with gr.Column():
top_p_feedback = gr.Textbox(label="Top-p for Feedback", value="0.9")
temperature_feedback = gr.Textbox(label="Temperature for Feedback", value="0.7")
use_retrieval = gr.Checkbox(label="Use Retrieval Augmentation", value=False, visible=False)
start_with_sage = gr.Checkbox(label="Start with Sage", value=False, visible=False)
problem = gr.Textbox(label="Input your problem", value="How many letter r are there in the sentence 'My strawberry is so ridiculously red.'?", lines=2)
solve_button = gr.Button("π Solve Problem")
reasoning_output = gr.Textbox(label="Reasoning steps with Code", interactive=False)
solution_output = gr.Textbox(label="Final answer", interactive=False)
# add a log display for showing the log messages
with gr.Accordion(label="π Log Messages", open=False):
log_output = gr.HTML("<p>No log messages yet.</p>")
solve_button.click(
solve_problem,
inputs=[problem, max_iterations, reward_threshold, swift_model_id, sage_model_id, feedback_model_id, use_retrieval, start_with_sage, temperature_swift, top_p_swift, temperature_sage, top_p_sage, temperature_feedback, top_p_feedback],
outputs=[reasoning_output, solution_output, log_output],
)
if __name__ == '__main__':
# make logs dir if it does not exist
if not os.path.exists('logs'):
os.makedirs('logs')
multiprocessing.set_start_method('spawn')
demo.launch(share=False, show_api=False)
|