File size: 4,357 Bytes
123094d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b92a97
123094d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
'''
python green_process.py Star_Rail_Tribbie_MMD_Videos_sp30 Star_Rail_Tribbie_MMD_Videos_30s_Green --fast_mode --max_workers=10
'''

import os
import sys
import argparse
import torch
from torchvision import transforms
from moviepy import VideoFileClip, vfx, concatenate_videoclips, ImageSequenceClip
from PIL import Image
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from transformers import AutoModelForImageSegmentation

# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load both BiRefNet models
birefnet = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
birefnet.to(device)
birefnet_lite = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
birefnet_lite.to(device)

# Image transformation pipeline
transform_image = transforms.Compose([
    transforms.Resize((768, 768)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

def process_frame(frame, fast_mode):
    try:
        pil_image = Image.fromarray(frame)
        #processed_image = process(pil_image, "#000000", fast_mode)
        processed_image = process(pil_image, "#00FF00", fast_mode)
        return np.array(processed_image)
    except Exception as e:
        print(f"Error processing frame: {e}")
        return frame

def process(image, bg, fast_mode=False):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to(device)
    model = birefnet_lite if fast_mode else birefnet
    
    with torch.no_grad():
        preds = model(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    
    if isinstance(bg, str) and bg.startswith("#"):
        color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
        background = Image.new("RGBA", image_size, color_rgb + (255,))
    elif isinstance(bg, Image.Image):
        background = bg.convert("RGBA").resize(image_size)
    else:
        background = Image.open(bg).convert("RGBA").resize(image_size)
    
    image = Image.composite(image, background, mask)
    return image

def process_video(video_path, output_path, fast_mode=True, max_workers=10):
    try:
        video = VideoFileClip(video_path)
        fps = video.fps
        audio = video.audio
        frames = list(video.iter_frames(fps=fps))
        
        processed_frames = []
        
        with ThreadPoolExecutor(max_workers=max_workers) as executor:
            futures = [executor.submit(process_frame, frames[i], fast_mode) for i in range(len(frames))]
            for future in futures:
                result = future.result()
                processed_frames.append(result)
        
        processed_video = ImageSequenceClip(processed_frames, fps=fps)
        processed_video = processed_video.with_audio(audio)
        processed_video.write_videofile(output_path, codec="libx264")
    
    except Exception as e:
        print(f"Error processing video {video_path}: {e}")

def main(input_folder, output_folder, fast_mode=True, max_workers=10):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    
    for video_file in os.listdir(input_folder):
        if video_file.endswith((".mp4", ".avi", ".mov")):
            video_path = os.path.join(input_folder, video_file)
            output_path = os.path.join(output_folder, video_file)
            print(f"Processing {video_path}...")
            process_video(video_path, output_path, fast_mode, max_workers)
            print(f"Finished processing {video_path}")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Process videos to replace background with green.")
    parser.add_argument("input_folder", type=str, help="Path to the folder containing input videos.")
    parser.add_argument("output_folder", type=str, help="Path to the folder where processed videos will be saved.")
    parser.add_argument("--fast_mode", action="store_true", help="Use BiRefNet_lite for faster processing.")
    parser.add_argument("--max_workers", type=int, default=10, help="Number of workers for parallel processing.")
    
    args = parser.parse_args()
    
    main(args.input_folder, args.output_folder, args.fast_mode, args.max_workers)