Spaces:
Running
Running
| from PIL import Image | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from roma.utils.utils import tensor_to_pil | |
| from roma import roma_outdoor | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| if __name__ == "__main__": | |
| from argparse import ArgumentParser | |
| parser = ArgumentParser() | |
| parser.add_argument("--im_A_path", default="assets/toronto_A.jpg", type=str) | |
| parser.add_argument("--im_B_path", default="assets/toronto_B.jpg", type=str) | |
| parser.add_argument("--save_path", default="demo/roma_warp_toronto.jpg", type=str) | |
| args, _ = parser.parse_known_args() | |
| im1_path = args.im_A_path | |
| im2_path = args.im_B_path | |
| save_path = args.save_path | |
| # Create model | |
| roma_model = roma_outdoor(device=device, coarse_res=560, upsample_res=(864, 1152)) | |
| H, W = roma_model.get_output_resolution() | |
| im1 = Image.open(im1_path).resize((W, H)) | |
| im2 = Image.open(im2_path).resize((W, H)) | |
| # Match | |
| warp, certainty = roma_model.match(im1_path, im2_path, device=device) | |
| # Sampling not needed, but can be done with model.sample(warp, certainty) | |
| x1 = (torch.tensor(np.array(im1)) / 255).to(device).permute(2, 0, 1) | |
| x2 = (torch.tensor(np.array(im2)) / 255).to(device).permute(2, 0, 1) | |
| im2_transfer_rgb = F.grid_sample( | |
| x2[None], warp[:,:W, 2:][None], mode="bilinear", align_corners=False | |
| )[0] | |
| im1_transfer_rgb = F.grid_sample( | |
| x1[None], warp[:, W:, :2][None], mode="bilinear", align_corners=False | |
| )[0] | |
| warp_im = torch.cat((im2_transfer_rgb,im1_transfer_rgb),dim=2) | |
| white_im = torch.ones((H,2*W),device=device) | |
| vis_im = certainty * warp_im + (1 - certainty) * white_im | |
| tensor_to_pil(vis_im, unnormalize=False).save(save_path) |