Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
1.98 kB
import torch.nn as nn
class PixelShuffleDecoder(nn.Module):
""" Pixel shuffle decoder. """
def __init__(self, input_feat_dim=128, num_upsample=2, output_channel=2):
super(PixelShuffleDecoder, self).__init__()
# Get channel parameters
self.channel_conf = self.get_channel_conf(num_upsample)
# Define the pixel shuffle
self.pixshuffle = nn.PixelShuffle(2)
# Process the feature
self.conv_block_lst = []
# The input block
self.conv_block_lst.append(
nn.Sequential(
nn.Conv2d(input_feat_dim, self.channel_conf[0],
kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(self.channel_conf[0]),
nn.ReLU(inplace=True)
))
# Intermediate block
for channel in self.channel_conf[1:-1]:
self.conv_block_lst.append(
nn.Sequential(
nn.Conv2d(channel, channel, kernel_size=3,
stride=1, padding=1),
nn.BatchNorm2d(channel),
nn.ReLU(inplace=True)
))
# Output block
self.conv_block_lst.append(
nn.Conv2d(self.channel_conf[-1], output_channel,
kernel_size=1, stride=1, padding=0)
)
self.conv_block_lst = nn.ModuleList(self.conv_block_lst)
# Get num of channels based on number of upsampling.
def get_channel_conf(self, num_upsample):
if num_upsample == 2:
return [256, 64, 16]
elif num_upsample == 3:
return [256, 64, 16, 4]
def forward(self, input_features):
# Iterate til output block
out = input_features
for block in self.conv_block_lst[:-1]:
out = block(out)
out = self.pixshuffle(out)
# Output layer
out = self.conv_block_lst[-1](out)
return out