File size: 14,445 Bytes
8741abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import tempfile
from share_btn import share_js, save_js
import gradio as gr
from PIL import Image
import torch
from omegaconf import OmegaConf
from transformers import AutoTokenizer
from models import Showo, MAGVITv2, get_mask_chedule
from prompting_utils import UniversalPrompting, create_attention_mask_predict_next
# Prepare model
config = OmegaConf.load("configs/showo_demo.yaml")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left")
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob)
vq_model = MAGVITv2(config.model.vq_model.type)
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device)
model.eval()
mask_token_id = model.config.mask_token_id
css = """
#chatbot { min-height: 300px; }
#save-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#save-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#share-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#share-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#gallery { z-index: 999999; }
#gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;}
#gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;}
@media (hover: none) {
#gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;}
}
.html2canvas-container { width: 3000px !important; height: 3000px !important; }
"""
def upload_image(state, image_input):
conversation = state[0]
chat_history = state[1]
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
return [conversation, chat_history + [input_image, ""]], conversation
def reset():
return [[], []], []
def reset_last(state):
conversation = state[0][:-1]
chat_history = state[1][:-2]
return [conversation, chat_history], conversation
def save_image_to_local(image: Image.Image):
filename = next(tempfile._get_candidate_names()) + '.png'
image.save(filename)
return filename
def text_to_image_generation(input_text, state, guidance_scale, generation_timesteps):
prompts = [input_text]
config.training.batch_size = config.batch_size = 1
config.training.guidance_scale = config.guidance_scale = guidance_scale
config.training.generation_timesteps = config.generation_timesteps = generation_timesteps
image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens),
dtype=torch.long, device=device) * mask_token_id
input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen')
if config.training.guidance_scale > 0:
uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen')
attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
rm_pad_in_image=True)
else:
attention_mask = create_attention_mask_predict_next(input_ids,
pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
rm_pad_in_image=True)
uncond_input_ids = None
if config.get("mask_schedule", None) is not None:
schedule = config.mask_schedule.schedule
args = config.mask_schedule.get("params", {})
mask_schedule = get_mask_chedule(schedule, **args)
else:
mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))
with torch.no_grad():
gen_token_ids = model.t2i_generate(
input_ids=input_ids,
uncond_input_ids=uncond_input_ids,
attention_mask=attention_mask,
guidance_scale=config.training.guidance_scale,
temperature=config.training.get("generation_temperature", 1.0),
timesteps=config.training.generation_timesteps,
noise_schedule=mask_schedule,
noise_type=config.training.get("noise_type", "mask"),
seq_len=config.model.showo.num_vq_tokens,
uni_prompting=uni_prompting,
config=config,
)
gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
images = vq_model.decode_code(gen_token_ids)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)]
wandb.log({"generated_images": wandb_images}, step=step)
def generate_for_prompt(input_text, state, ret_scale_factor, num_words, temperature):
g_cuda = torch.Generator(device='cuda').manual_seed(1337)
# Ignore empty inputs.
if len(input_text) == 0:
return state, state[0], gr.update(visible=True)
input_prompt = 'Q: ' + input_text + '\nA:'
conversation = state[0]
chat_history = state[1]
print('Generating for', chat_history, flush=True)
# If an image was uploaded, prepend it to the model.
model_inputs = chat_history
model_inputs.append(input_prompt)
# Remove empty text.
model_inputs = [s for s in model_inputs if s != '']
top_p = 1.0
if temperature != 0.0:
top_p = 0.95
print('Running model.generate_for_images_and_texts with', model_inputs, flush=True)
model_outputs = model.generate_for_images_and_texts(model_inputs,
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
temperature=temperature, max_num_rets=1,
num_inference_steps=50, generator=g_cuda)
print('model_outputs', model_outputs, ret_scale_factor, flush=True)
response = ''
text_outputs = []
for output_i, p in enumerate(model_outputs):
if type(p) == str:
if output_i > 0:
response += '<br/>'
# Remove the image tokens for output.
text_outputs.append(p.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', ''))
response += p
if len(model_outputs) > 1:
response += '<br/>'
elif type(p) == dict:
# Decide whether to generate or retrieve.
if p['decision'] is not None and p['decision'][0] == 'gen':
image = p['gen'][0][0]#.resize((224, 224))
filename = save_image_to_local(image)
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Generated)</p>'
else:
image = p['ret'][0][0]#.resize((224, 224))
filename = save_image_to_local(image)
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Retrieved)</p>'
chat_history = model_inputs + \
[' '.join([s for s in model_outputs if type(s) == str]) + '\n']
# Remove [RET] from outputs.
conversation.append((input_text, response.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', '')))
# Set input image to None.
print('state', state, flush=True)
print('updated state', [conversation, chat_history], flush=True)
return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True)
with gr.Blocks(css=css) as demo:
gr.HTML("""
<h1>๐ GILL</h1>
<p>This is the official Gradio demo for the GILL model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p>
<strong>Paper:</strong> <a href="https://arxiv.org/abs/2305.17216" target="_blank">Generating Images with Multimodal Language Models</a>
<br/>
<strong>Project Website:</strong> <a href="https://jykoh.com/gill" target="_blank">GILL Website</a>
<br/>
<strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/gill" target="_blank">GitHub</a>
<br/>
<br/>
<strong>Tips:</strong>
<ul>
<li>Start by inputting either image or text prompts (or both) and chat with GILL to get image-and-text replies.</li>
<li>Tweak the level of sensitivity to images and text using the parameters on the right.</li>
<li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li>
<li>If the model outputs a blank image, it is because Stable Diffusion's safety filter detected inappropriate content. Please try again with a different prompt.</li>
<li>Outputs may differ slightly from the paper due to slight implementation differences. For reproducing paper results, please use our <a href="https://github.com/kohjingyu/gill" target="_blank">official code</a>.</li>
<li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/gill?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li>
</ul>
""")
gr_state = gr.State([[], []]) # conversation, chat_history
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot", label="๐ GILL Chatbot")
with gr.Row():
image_btn = gr.UploadButton("๐ผ๏ธ Upload Image", file_types=["image"])
text_input = gr.Textbox(label="Message", placeholder="Type a message")
with gr.Column():
submit_btn = gr.Button("Submit", interactive=True, variant="primary")
clear_last_btn = gr.Button("Undo")
clear_btn = gr.Button("Reset All")
with gr.Row(visible=False) as save_group:
save_button = gr.Button("๐พ Save Conversation as .png", elem_id="save-btn")
with gr.Row(visible=False) as share_group:
share_button = gr.Button("๐ค Share to Community (opens new window)", elem_id="share-btn")
with gr.Column(scale=0.3, min_width=400):
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.3, step=0.1, interactive=True,
label="Frequency multiplier for returning images (higher means more frequent)")
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
step=1, interactive=True, label="Max # of words")
gr_temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")
gallery = gr.Gallery(
value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery",
).style(grid=[2], height="auto")
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
text_input.submit(lambda: "", None, text_input) # Reset chatbox.
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
submit_btn.click(lambda: "", None, text_input) # Reset chatbox.
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
clear_btn.click(reset, [], [gr_state, chatbot])
share_button.click(None, [], [], _js=share_js)
save_button.click(None, [], [], _js=save_js)
demo.queue(concurrency_count=1, api_open=False, max_size=16)
demo.launch(debug=True, server_name="0.0.0.0")
|