File size: 14,445 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import tempfile
from share_btn import share_js, save_js
import gradio as gr
from PIL import Image
import torch
from omegaconf import OmegaConf
from transformers import AutoTokenizer

from models import Showo, MAGVITv2, get_mask_chedule
from prompting_utils import UniversalPrompting, create_attention_mask_predict_next


# Prepare model
config = OmegaConf.load("configs/showo_demo.yaml")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left")

uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
                                   special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
                                   ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob)

vq_model = MAGVITv2(config.model.vq_model.type)
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()

model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device)
model.eval()

mask_token_id = model.config.mask_token_id


css = """
    #chatbot { min-height: 300px; }
    #save-btn {
        background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
    }
    #save-btn:hover {
        background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
    }
    #share-btn {
        background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
    }
    #share-btn:hover {
        background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
    }
    #gallery { z-index: 999999; }
    #gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;}
    #gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;}
    @media (hover: none) {
        #gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;}
    }
    .html2canvas-container { width: 3000px !important; height: 3000px !important; }
"""


def upload_image(state, image_input):
    conversation = state[0]
    chat_history = state[1]
    input_image = Image.open(image_input.name).resize(
        (224, 224)).convert('RGB')
    input_image.save(image_input.name)  # Overwrite with smaller image.
    conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
    return [conversation, chat_history + [input_image, ""]], conversation


def reset():
    return [[], []], []


def reset_last(state):
    conversation = state[0][:-1]
    chat_history = state[1][:-2]
    return [conversation, chat_history], conversation


def save_image_to_local(image: Image.Image):
    filename = next(tempfile._get_candidate_names()) + '.png'
    image.save(filename)
    return filename


def text_to_image_generation(input_text, state, guidance_scale, generation_timesteps):
    prompts = [input_text]
    config.training.batch_size = config.batch_size = 1
    config.training.guidance_scale = config.guidance_scale = guidance_scale
    config.training.generation_timesteps = config.generation_timesteps = generation_timesteps

    image_tokens = torch.ones((len(prompts), config.model.showo.num_vq_tokens),
                              dtype=torch.long, device=device) * mask_token_id

    input_ids, _ = uni_prompting((prompts, image_tokens), 't2i_gen')

    if config.training.guidance_scale > 0:
        uncond_input_ids, _ = uni_prompting(([''] * len(prompts), image_tokens), 't2i_gen')
        attention_mask = create_attention_mask_predict_next(torch.cat([input_ids, uncond_input_ids], dim=0),
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
    else:
        attention_mask = create_attention_mask_predict_next(input_ids,
                                                            pad_id=int(uni_prompting.sptids_dict['<|pad|>']),
                                                            soi_id=int(uni_prompting.sptids_dict['<|soi|>']),
                                                            eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']),
                                                            rm_pad_in_image=True)
        uncond_input_ids = None

    if config.get("mask_schedule", None) is not None:
        schedule = config.mask_schedule.schedule
        args = config.mask_schedule.get("params", {})
        mask_schedule = get_mask_chedule(schedule, **args)
    else:
        mask_schedule = get_mask_chedule(config.training.get("mask_schedule", "cosine"))

    with torch.no_grad():
        gen_token_ids = model.t2i_generate(
            input_ids=input_ids,
            uncond_input_ids=uncond_input_ids,
            attention_mask=attention_mask,
            guidance_scale=config.training.guidance_scale,
            temperature=config.training.get("generation_temperature", 1.0),
            timesteps=config.training.generation_timesteps,
            noise_schedule=mask_schedule,
            noise_type=config.training.get("noise_type", "mask"),
            seq_len=config.model.showo.num_vq_tokens,
            uni_prompting=uni_prompting,
            config=config,
        )

    gen_token_ids = torch.clamp(gen_token_ids, max=config.model.showo.codebook_size - 1, min=0)
    images = vq_model.decode_code(gen_token_ids)

    images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
    images *= 255.0
    images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
    pil_images = [Image.fromarray(image) for image in images]

    wandb_images = [wandb.Image(image, caption=prompts[i]) for i, image in enumerate(pil_images)]
    wandb.log({"generated_images": wandb_images}, step=step)


def generate_for_prompt(input_text, state, ret_scale_factor, num_words, temperature):
    g_cuda = torch.Generator(device='cuda').manual_seed(1337)

    # Ignore empty inputs.
    if len(input_text) == 0:
        return state, state[0], gr.update(visible=True)

    input_prompt = 'Q: ' + input_text + '\nA:'
    conversation = state[0]
    chat_history = state[1]
    print('Generating for', chat_history, flush=True)

    # If an image was uploaded, prepend it to the model.
    model_inputs = chat_history
    model_inputs.append(input_prompt)
    # Remove empty text.
    model_inputs = [s for s in model_inputs if s != '']

    top_p = 1.0
    if temperature != 0.0:
        top_p = 0.95

    print('Running model.generate_for_images_and_texts with', model_inputs, flush=True)
    model_outputs = model.generate_for_images_and_texts(model_inputs,
                                                        num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
                                                        temperature=temperature, max_num_rets=1,
                                                        num_inference_steps=50, generator=g_cuda)
    print('model_outputs', model_outputs, ret_scale_factor, flush=True)

    response = ''
    text_outputs = []
    for output_i, p in enumerate(model_outputs):
        if type(p) == str:
            if output_i > 0:
                response += '<br/>'
            # Remove the image tokens for output.
            text_outputs.append(p.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', ''))
            response += p
            if len(model_outputs) > 1:
                response += '<br/>'
        elif type(p) == dict:
            # Decide whether to generate or retrieve.
            if p['decision'] is not None and p['decision'][0] == 'gen':
                image = p['gen'][0][0]#.resize((224, 224))
                filename = save_image_to_local(image)
                response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Generated)</p>'
            else:
                image = p['ret'][0][0]#.resize((224, 224))
                filename = save_image_to_local(image)
                response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Retrieved)</p>'

    chat_history = model_inputs + \
        [' '.join([s for s in model_outputs if type(s) == str]) + '\n']
    # Remove [RET] from outputs.
    conversation.append((input_text, response.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', '')))

    # Set input image to None.
    print('state', state, flush=True)
    print('updated state', [conversation, chat_history], flush=True)
    return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True)


with gr.Blocks(css=css) as demo:
    gr.HTML("""
        <h1>๐ŸŸ GILL</h1>
        <p>This is the official Gradio demo for the GILL model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p>

        <strong>Paper:</strong> <a href="https://arxiv.org/abs/2305.17216" target="_blank">Generating Images with Multimodal Language Models</a>
        <br/>
        <strong>Project Website:</strong> <a href="https://jykoh.com/gill" target="_blank">GILL Website</a>
        <br/>
        <strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/gill" target="_blank">GitHub</a>
        <br/>
        <br/>

        <strong>Tips:</strong>
        <ul>
        <li>Start by inputting either image or text prompts (or both) and chat with GILL to get image-and-text replies.</li>
        <li>Tweak the level of sensitivity to images and text using the parameters on the right.</li>
        <li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li>
        <li>If the model outputs a blank image, it is because Stable Diffusion's safety filter detected inappropriate content. Please try again with a different prompt.</li>
        <li>Outputs may differ slightly from the paper due to slight implementation differences. For reproducing paper results, please use our <a href="https://github.com/kohjingyu/gill" target="_blank">official code</a>.</li>
        <li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/gill?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li>
        </ul>
    """)

    gr_state = gr.State([[], []])  # conversation, chat_history

    with gr.Row():
        with gr.Column(scale=0.7, min_width=500):
            with gr.Row():
                chatbot = gr.Chatbot(elem_id="chatbot", label="๐ŸŸ GILL Chatbot")
            with gr.Row():
                image_btn = gr.UploadButton("๐Ÿ–ผ๏ธ Upload Image", file_types=["image"])

                text_input = gr.Textbox(label="Message", placeholder="Type a message")

                with gr.Column():
                    submit_btn = gr.Button("Submit", interactive=True, variant="primary")
                    clear_last_btn = gr.Button("Undo")
                    clear_btn = gr.Button("Reset All")
                    with gr.Row(visible=False) as save_group:
                        save_button = gr.Button("๐Ÿ’พ Save Conversation as .png", elem_id="save-btn")

                    with gr.Row(visible=False) as share_group:
                        share_button = gr.Button("๐Ÿค— Share to Community (opens new window)", elem_id="share-btn")

        with gr.Column(scale=0.3, min_width=400):
            ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.3, step=0.1, interactive=True,
                                         label="Frequency multiplier for returning images (higher means more frequent)")
            gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
                                   step=1, interactive=True, label="Max # of words")
            gr_temperature = gr.Slider(
                minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")

            gallery = gr.Gallery(
                value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery",
            ).style(grid=[2], height="auto")

    text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
                      gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
    text_input.submit(lambda: "", None, text_input)  # Reset chatbox.

    submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
                     gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
    submit_btn.click(lambda: "", None, text_input)  # Reset chatbox.

    image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
    clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
    clear_btn.click(reset, [], [gr_state, chatbot])
    share_button.click(None, [], [], _js=share_js)
    save_button.click(None, [], [], _js=save_js)


demo.queue(concurrency_count=1, api_open=False, max_size=16)
demo.launch(debug=True, server_name="0.0.0.0")