import hashlib import io import re import os import imageio import numpy as np from typing import Union import cv2 import numpy as np import requests import random import torch import PIL.Image import PIL.ImageOps from PIL import Image from typing import Callable, Union import torch import torchvision import torch.distributed as dist import torch.nn.functional as F import decord decord.bridge.set_bridge('torch') from PIL import Image, ImageOps from safetensors import safe_open # from tqdm import tqdm from einops import rearrange from motionclone.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint,convert_ldm_clip_checkpoint_concise from motionclone.utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora from huggingface_hub import snapshot_download # from transformers import ( # AutoFeatureExtractor, # BertTokenizerFast, # CLIPImageProcessor, # CLIPTextConfig, # CLIPTextModel, # CLIPTextModelWithProjection, # CLIPTokenizer, # CLIPVisionConfig, # CLIPVisionModelWithProjection, # ) MOTION_MODULES = [ "mm_sd_v14.ckpt", "mm_sd_v15.ckpt", "mm_sd_v15_v2.ckpt", "v3_sd15_mm.ckpt", ] ADAPTERS = [ # "mm_sd_v14.ckpt", # "mm_sd_v15.ckpt", # "mm_sd_v15_v2.ckpt", # "mm_sdxl_v10_beta.ckpt", "v2_lora_PanLeft.ckpt", "v2_lora_PanRight.ckpt", "v2_lora_RollingAnticlockwise.ckpt", "v2_lora_RollingClockwise.ckpt", "v2_lora_TiltDown.ckpt", "v2_lora_TiltUp.ckpt", "v2_lora_ZoomIn.ckpt", "v2_lora_ZoomOut.ckpt", "v3_sd15_adapter.ckpt", # "v3_sd15_mm.ckpt", "v3_sd15_sparsectrl_rgb.ckpt", "v3_sd15_sparsectrl_scribble.ckpt", ] BACKUP_DREAMBOOTH_MODELS = [ "realisticVisionV60B1_v51VAE.safetensors", "majicmixRealistic_v4.safetensors", "leosamsFilmgirlUltra_velvia20Lora.safetensors", "toonyou_beta3.safetensors", "majicmixRealistic_v5Preview.safetensors", "rcnzCartoon3d_v10.safetensors", "lyriel_v16.safetensors", "leosamsHelloworldXL_filmGrain20.safetensors", "TUSUN.safetensors", ] def zero_rank_print(s): if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s) def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, fps=fps) def auto_download(local_path, is_dreambooth_lora=False): hf_repo = "guoyww/animatediff_t2i_backups" if is_dreambooth_lora else "guoyww/animatediff" folder, filename = os.path.split(local_path) if not os.path.exists(local_path): print(f"local file {local_path} does not exist. trying to download from {hf_repo}") if is_dreambooth_lora: assert filename in BACKUP_DREAMBOOTH_MODELS, f"{filename} dose not exist in {hf_repo}" else: assert filename in MOTION_MODULES + ADAPTERS, f"{filename} dose not exist in {hf_repo}" folder = "." if folder == "" else folder os.makedirs(folder, exist_ok=True) snapshot_download(repo_id=hf_repo, local_dir=folder, allow_patterns=[filename]) def load_weights( animation_pipeline, # motion module motion_module_path = "", motion_module_lora_configs = [], # domain adapter adapter_lora_path = "", adapter_lora_scale = 1.0, # image layers dreambooth_model_path = "", lora_model_path = "", lora_alpha = 0.8, ): # motion module unet_state_dict = {} if motion_module_path != "": print(f"load motion module from {motion_module_path}") motion_module_state_dict = torch.load(motion_module_path, map_location="cpu") motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name}) unet_state_dict.pop("animatediff_config", "") missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False) # assert len(unexpected) == 0 del unet_state_dict # base model if dreambooth_model_path != "": print(f"load dreambooth model from {dreambooth_model_path}") if dreambooth_model_path.endswith(".safetensors"): # import pdb; pdb.set_trace() dreambooth_state_dict = {} # import safetensors # dreambooth_state_dict = safetensors.torch.load_file(dreambooth_model_path) # import pdb; pdb.set_trace() with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f: for key in f.keys(): dreambooth_state_dict[key] = f.get_tensor(key) # import pdb; pdb.set_trace() elif dreambooth_model_path.endswith(".ckpt"): dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu") # 1. vae converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config) animation_pipeline.vae.load_state_dict(converted_vae_checkpoint) # 2. unet converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config) animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False) # 3. text_model # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_concise(dreambooth_state_dict) animation_pipeline.text_encoder.load_state_dict(converted_text_encoder_checkpoint, strict=True) del dreambooth_state_dict, converted_vae_checkpoint, converted_unet_checkpoint, converted_text_encoder_checkpoint # clip_config_name = "models/clip-vit-large-patch14" # clip_config = CLIPTextConfig.from_pretrained(clip_config_name, local_files_only=True) # text_model = CLIPTextModel(clip_config) # keys = list(dreambooth_state_dict.keys()) # text_model_dict = {} # for key in keys: # if key.startswith("cond_stage_model.transformer"): # text_model_dict[key[len("cond_stage_model.transformer.") :]] = dreambooth_state_dict[key] # text_model.load_state_dict(text_model_dict) # animation_pipeline.text_encoder = text_model.to(dtype=animation_pipeline.unet.dtype) # # import pdb; pdb.set_trace() # # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) # del dreambooth_state_dict # lora layers if lora_model_path != "": print(f"load lora model from {lora_model_path}") assert lora_model_path.endswith(".safetensors") lora_state_dict = {} with safe_open(lora_model_path, framework="pt", device="cpu") as f: for key in f.keys(): lora_state_dict[key] = f.get_tensor(key) animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha) del lora_state_dict # domain adapter lora if adapter_lora_path != "": print(f"load domain lora from {adapter_lora_path}") domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu") domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict domain_lora_state_dict.pop("animatediff_config", "") animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale) # motion module lora for motion_module_lora_config in motion_module_lora_configs: path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"] print(f"load motion LoRA from {path}") motion_lora_state_dict = torch.load(path, map_location="cpu") motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict motion_lora_state_dict.pop("animatediff_config", "") animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha) return animation_pipeline def video_preprocess(video_path, height, width, video_length, duration=None, sample_start_idx=0,): #print("in video_preprocess:") #print(video_path, height, width, video_length, duration, sample_start_idx) video_name = video_path.split('/')[-1].split('.')[0] vr = decord.VideoReader(video_path) fps = vr.get_avg_fps() if duration is None: # 读取整个视频 total_frames = len(vr) else: # 根据给定的时长(秒)计算帧数 total_frames = int(fps * duration) total_frames = min(total_frames, len(vr)) # 确保不超过视频总长度 sample_index = np.linspace(0, total_frames - 1, video_length, dtype=int) print(total_frames,sample_index) video = vr.get_batch(sample_index) ''' print("after betch :") print(video) ''' import torch if hasattr(video, "asnumpy"): video = video.asnumpy() video = torch.from_numpy(video) video = rearrange(video, "f h w c -> f c h w") video = F.interpolate(video, size=(height, width), mode="bilinear", align_corners=True) # video_sample = rearrange(video, "(b f) c h w -> b f h w c", f=video_length) # imageio.mimwrite(f"processed_videos/sample_{video_name}.mp4", video_sample[0], fps=8, quality=9) video = video / 127.5 - 1.0 return video def set_nested_item(dataDict, mapList, value): """Set item in nested dictionary""" """ Example: the mapList contains the name of each key ['injection','self-attn'] this method will change the content in dataDict['injection']['self-attn'] with value """ for k in mapList[:-1]: dataDict = dataDict[k] dataDict[mapList[-1]] = value def merge_sweep_config(base_config, update): """Merge the updated parameters into the base config""" if base_config is None: raise ValueError("Base config is None") if update is None: raise ValueError("Update config is None") for key in update.keys(): map_list = key.split("--") set_nested_item(base_config, map_list, update[key]) return base_config # Adapt from https://github.com/castorini/daam def compute_token_merge_indices(tokenizer, prompt: str, word: str, word_idx: int = None, offset_idx: int = 0): merge_idxs = [] tokens = tokenizer.tokenize(prompt.lower()) if word_idx is None: word = word.lower() search_tokens = tokenizer.tokenize(word) start_indices = [x + offset_idx for x in range(len(tokens)) if tokens[x:x + len(search_tokens)] == search_tokens] for indice in start_indices: merge_idxs += [i + indice for i in range(0, len(search_tokens))] if not merge_idxs: raise Exception(f'Search word {word} not found in prompt!') else: merge_idxs.append(word_idx) return [x + 1 for x in merge_idxs], word_idx # Offset by 1. def extract_data(input_string: str) -> list: print("input_string:", input_string) """ Extract data from a string pattern where contents in () are separated by ; The first item in each () is considered as 'ref' and the rest as 'gen'. Args: - input_string (str): The input string pattern. Returns: - list: A list of dictionaries containing 'ref' and 'gen'. """ pattern = r'\(([^)]+)\)' matches = re.findall(pattern, input_string) data = [] for match in matches: parts = [x.strip() for x in match.split(';')] ref = parts[0].strip() gen = parts[1].strip() data.append({'ref': ref, 'gen': gen}) return data def generate_hash_key(image, prompt=""): """ Generate a hash key for the given image and prompt. """ byte_array = io.BytesIO() image.save(byte_array, format='JPEG') # Get byte data image_byte_data = byte_array.getvalue() # Combine image byte data and prompt byte data combined_data = image_byte_data + prompt.encode('utf-8') sha256 = hashlib.sha256() sha256.update(combined_data) return sha256.hexdigest() def save_data(data, folder_path, key): """ Save data to a file, using key as the file name """ if not os.path.exists(folder_path): os.makedirs(folder_path) file_path = os.path.join(folder_path, f"{key}.pt") torch.save(data, file_path) def get_data(folder_path, key): """ Get data from a file, using key as the file name :param folder_path: :param key: :return: """ file_path = os.path.join(folder_path, f"{key}.pt") if os.path.exists(file_path): return torch.load(file_path) else: return None def PILtoTensor(data: Image.Image) -> torch.Tensor: return torch.tensor(np.array(data)).permute(2, 0, 1).unsqueeze(0).float() def TensorToPIL(data: torch.Tensor) -> Image.Image: return Image.fromarray(data.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)) # Adapt from https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/utils/loading_utils.py#L9 def load_image( image: Union[str, PIL.Image.Image], convert_method: Callable[[PIL.Image.Image], PIL.Image.Image] = None ) -> PIL.Image.Image: """ Loads `image` to a PIL Image. Args: image (`str` or `PIL.Image.Image`): The image to convert to the PIL Image format. convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], optional): A conversion method to apply to the image after loading it. When set to `None` the image will be converted "RGB". Returns: `PIL.Image.Image`: A PIL Image. """ if isinstance(image, str): if image.startswith("http://") or image.startswith("https://"): image = PIL.Image.open(requests.get(image, stream=True).raw) elif os.path.isfile(image): image = PIL.Image.open(image) else: raise ValueError( f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {image} is not a valid path." ) elif isinstance(image, PIL.Image.Image): image = image else: raise ValueError( "Incorrect format used for the image. Should be a URL linking to an image, a local path, or a PIL image." ) image = PIL.ImageOps.exif_transpose(image) if convert_method is not None: image = convert_method(image) else: image = image.convert("RGB") return image # Take from huggingface/diffusers def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg def _in_step(config, step): in_step = False try: start_step = config.start_step end_step = config.end_step if start_step <= step < end_step: in_step = True except: in_step = False return in_step def classify_blocks(block_list, name): is_correct_block = False for block in block_list: if block in name: is_correct_block = True break return is_correct_block def set_all_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True