diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..ae2b0cda96652d263cc450684d5ad701feb66bcf 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,25 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +__assets__/feature_visualization.png filter=lfs diff=lfs merge=lfs -text +__assets__/pipeline.png filter=lfs diff=lfs merge=lfs -text +__assets__/teaser.gif filter=lfs diff=lfs merge=lfs -text +__assets__/teaser.mp4 filter=lfs diff=lfs merge=lfs -text +condition_images/rgb/dog_on_grass.png filter=lfs diff=lfs merge=lfs -text +generated_videos/camera_zoom_out_Dog,_lying_on_the_grass76739_76739.mp4 filter=lfs diff=lfs merge=lfs -text +generated_videos/sample_white_tiger_Lion,_walks_in_the_forest76739_76739.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_1.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_pan_down.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_pan_up.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_translation_1.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_translation_2.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_zoom_in.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/camera_zoom_out.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_astronaut.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_blackswan.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_cat.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_cow.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_fox.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_leaves.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_white_tiger.mp4 filter=lfs diff=lfs merge=lfs -text +reference_videos/sample_wolf.mp4 filter=lfs diff=lfs merge=lfs -text diff --git a/README.md b/README.md index 1fbade05731b92e6f8c70c1ae6e2c4c869c2f16f..2052d9f049112555f5668c19f85e0119ad6361e8 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,168 @@ ---- -title: MotionClone -emoji: 🐠 -colorFrom: red -colorTo: indigo -sdk: gradio -sdk_version: 5.16.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +# MotionClone +This repository is the official implementation of [MotionClone](https://arxiv.org/abs/2406.05338). It is a **training-free framework** that enables motion cloning from a reference video for controllable video generation, **without cumbersome video inversion processes**. +
Click for the full abstract of MotionClone + +> Motion-based controllable video generation offers the potential for creating captivating visual content. Existing methods typically necessitate model training to encode particular motion cues or incorporate fine-tuning to inject certain motion patterns, resulting in limited flexibility and generalization. +In this work, we propose **MotionClone** a training-free framework that enables motion cloning from reference videos to versatile motion-controlled video generation, including text-to-video and image-to-video. Based on the observation that the dominant components in temporal-attention maps drive motion synthesis, while the rest mainly capture noisy or very subtle motions, MotionClone utilizes sparse temporal attention weights as motion representations for motion guidance, facilitating diverse motion transfer across varying scenarios. Meanwhile, MotionClone allows for the direct extraction of motion representation through a single denoising step, bypassing the cumbersome inversion processes and thus promoting both efficiency and flexibility. +Extensive experiments demonstrate that MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency. +
+ +**[MotionClone: Training-Free Motion Cloning for Controllable Video Generation](https://arxiv.org/abs/2406.05338)** +
+[Pengyang Ling*](https://github.com/LPengYang/), +[Jiazi Bu*](https://github.com/Bujiazi/), +[Pan Zhang](https://panzhang0212.github.io/), +[Xiaoyi Dong](https://scholar.google.com/citations?user=FscToE0AAAAJ&hl=en/), +[Yuhang Zang](https://yuhangzang.github.io/), +[Tong Wu](https://wutong16.github.io/), +[Huaian Chen](https://scholar.google.com.hk/citations?hl=zh-CN&user=D6ol9XkAAAAJ), +[Jiaqi Wang](https://myownskyw7.github.io/), +[Yi Jin](https://scholar.google.ca/citations?hl=en&user=mAJ1dCYAAAAJ) +(*Equal Contribution)(Corresponding Author) + + +[![arXiv](https://img.shields.io/badge/arXiv-2406.05338-b31b1b.svg)](https://arxiv.org/abs/2406.05338) +[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://bujiazi.github.io/motionclone.github.io/) +![](https://img.shields.io/github/stars/LPengYang/MotionClone?style=social) + + + +## Demo +[![]](https://github.com/user-attachments/assets/d1f1c753-f192-455b-9779-94c925e51aaa) + +```bash +sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm + +conda create --name py310 python=3.10 +conda activate py310 +pip install ipykernel +python -m ipykernel install --user --name py310 --display-name "py310" + +git clone https://github.com/svjack/MotionClone && cd MotionClone +pip install -r requirements.txt + +mkdir -p models +git clone https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5 models/StableDiffusion/ + +mkdir -p models/DreamBooth_LoRA +wget https://huggingface.co/svjack/Realistic-Vision-V6.0-B1/resolve/main/realisticVisionV60B1_v51VAE.safetensors -O models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors + +mkdir -p models/Motion_Module +wget https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_mm.ckpt -O models/Motion_Module/v3_sd15_mm.ckpt +wget https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_adapter.ckpt -O models/Motion_Module/v3_sd15_adapter.ckpt + +mkdir -p models/SparseCtrl +wget https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_rgb.ckpt -O models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt +wget https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_scribble.ckpt -O models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt +``` + +## 🖋 News +- The latest version of our paper (**v4**) is available on arXiv! (10.08) +- The latest version of our paper (**v3**) is available on arXiv! (7.2) +- Code released! (6.29) + +## 🏗️ Todo +- [x] We have updated the latest version of MotionCloning, which performs motion transfer **without video inversion** and supports **image-to-video and sketch-to-video**. +- [x] Release the MotionClone code (We have released **the first version** of our code and will continue to optimize it. We welcome any questions or issues you may have and will address them promptly.) +- [x] Release paper + +## 📚 Gallery +We show more results in the [Project Page](https://bujiazi.github.io/motionclone.github.io/). + +## 🚀 Method Overview +### Feature visualization +
+ +
+ +### Pipeline +
+ +
+ +MotionClone utilizes sparse temporal attention weights as motion representations for motion guidance, facilitating diverse motion transfer across varying scenarios. Meanwhile, MotionClone allows for the direct extraction of motion representation through a single denoising step, bypassing the cumbersome inversion processes and thus promoting both efficiency and flexibility. + +## 🔧 Installations (python==3.11.3 recommended) + +### Setup repository and conda environment + +``` +git clone https://github.com/Bujiazi/MotionClone.git +cd MotionClone + +conda env create -f environment.yaml +conda activate motionclone +``` + +## 🔑 Pretrained Model Preparations + +### Download Stable Diffusion V1.5 + +``` +git lfs install +git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/ +``` + +After downloading Stable Diffusion, save them to `models/StableDiffusion`. + +### Prepare Community Models + +Manually download the community `.safetensors` models from [RealisticVision V5.1](https://civitai.com/models/4201?modelVersionId=130072) and save them to `models/DreamBooth_LoRA`. + +### Prepare AnimateDiff Motion Modules + +Manually download the AnimateDiff modules from [AnimateDiff](https://github.com/guoyww/AnimateDiff), we recommend [`v3_adapter_sd_v15.ckpt`](https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt) and [`v3_sd15_mm.ckpt.ckpt`](https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_mm.ckpt). Save the modules to `models/Motion_Module`. + +### Prepare SparseCtrl for image-to-video and sketch-to-video +Manually download "v3_sd15_sparsectrl_rgb.ckpt" and "v3_sd15_sparsectrl_scribble.ckpt" from [AnimateDiff](https://huggingface.co/guoyww/animatediff/tree/main). Save the modules to `models/SparseCtrl`. + +## 🎈 Quick Start + +### Perform Text-to-video generation with customized camera motion +``` +python t2v_video_sample.py --inference_config "configs/t2v_camera.yaml" --examples "configs/t2v_camera.jsonl" +``` + +https://github.com/user-attachments/assets/2656a49a-c57d-4f89-bc65-5ec09ac037ea + + + + + +### Perform Text-to-video generation with customized object motion +``` +python t2v_video_sample.py --inference_config "configs/t2v_object.yaml" --examples "configs/t2v_object.jsonl" +``` +### Combine motion cloning with sketch-to-video +``` +python i2v_video_sample.py --inference_config "configs/i2v_sketch.yaml" --examples "configs/i2v_sketch.jsonl" +``` +### Combine motion cloning with image-to-video +``` +python i2v_video_sample.py --inference_config "configs/i2v_rgb.yaml" --examples "configs/i2v_rgb.jsonl" +``` + + +## 📎 Citation + +If you find this work helpful, please cite the following paper: + +``` +@article{ling2024motionclone, + title={MotionClone: Training-Free Motion Cloning for Controllable Video Generation}, + author={Ling, Pengyang and Bu, Jiazi and Zhang, Pan and Dong, Xiaoyi and Zang, Yuhang and Wu, Tong and Chen, Huaian and Wang, Jiaqi and Jin, Yi}, + journal={arXiv preprint arXiv:2406.05338}, + year={2024} +} +``` + +## 📣 Disclaimer + +This is official code of MotionClone. +All the copyrights of the demo images and audio are from community users. +Feel free to contact us if you would like remove them. + +## 💞 Acknowledgements +The code is built upon the below repositories, we thank all the contributors for open-sourcing. +* [AnimateDiff](https://github.com/guoyww/AnimateDiff) +* [FreeControl](https://github.com/genforce/freecontrol) diff --git a/__assets__/feature_visualization.png b/__assets__/feature_visualization.png new file mode 100644 index 0000000000000000000000000000000000000000..29061b8073ee2ca9b5fdd1246b3636ab59d6e6b3 --- /dev/null +++ b/__assets__/feature_visualization.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c0891fbfe56b1650d6c65dac700d02faee46cff0cc56515c8a23a8be0c9a46b +size 943577 diff --git a/__assets__/pipeline.png b/__assets__/pipeline.png new file mode 100644 index 0000000000000000000000000000000000000000..7b78d569a14b8ea5d6f2e5b7ddcc15f5fa332ebc --- /dev/null +++ b/__assets__/pipeline.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bc9926f5f4a746475cb1963a4e908671db82d0cc630c8a5e9cd43f78885fd82d +size 1006207 diff --git a/__assets__/teaser.gif b/__assets__/teaser.gif new file mode 100644 index 0000000000000000000000000000000000000000..bafc7bc8bd5cdd28cfc575aa126b0245da972b7a --- /dev/null +++ b/__assets__/teaser.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2ee4ff21495ae52ff2c9f4ff9ad5406c3f4445633a437664f9cc20277460ea6f +size 14601625 diff --git a/__assets__/teaser.mp4 b/__assets__/teaser.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..d5f80422cb2ebe01032a5412da0aa129569f14d5 --- /dev/null +++ b/__assets__/teaser.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:201747f42691e708b9efe48ea054961fd82cf54b83ac43e0d97a43f81779c00b +size 4957080 diff --git a/condition_images/rgb/dog_on_grass.png b/condition_images/rgb/dog_on_grass.png new file mode 100644 index 0000000000000000000000000000000000000000..d74de1a8e6d7c1e68b993d57c239d8eb68cc4e76 --- /dev/null +++ b/condition_images/rgb/dog_on_grass.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1b3ead35573919274f59d763c5085608ca78a993bf508448ca22af31ebcab113 +size 1508291 diff --git a/condition_images/scribble/lion_forest.png b/condition_images/scribble/lion_forest.png new file mode 100644 index 0000000000000000000000000000000000000000..6f9189f6a1a70180ee55cfb684314500c8996cbc Binary files /dev/null and b/condition_images/scribble/lion_forest.png differ diff --git a/configs/i2v_rgb.jsonl b/configs/i2v_rgb.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..27a64f03011d33f68510ed2b07de71ecc65c57b2 --- /dev/null +++ b/configs/i2v_rgb.jsonl @@ -0,0 +1 @@ +{"video_path":"reference_videos/camera_zoom_out.mp4", "condition_image_paths":["condition_images/rgb/dog_on_grass.png"], "new_prompt": "Dog, lying on the grass"} \ No newline at end of file diff --git a/configs/i2v_rgb.yaml b/configs/i2v_rgb.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4cf348b0353deb78c2be7c21a47606f8ed142889 --- /dev/null +++ b/configs/i2v_rgb.yaml @@ -0,0 +1,20 @@ +motion_module: "models/Motion_Module/v3_sd15_mm.ckpt" +dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors" +model_config: "configs/model_config/model_config.yaml" +controlnet_path: "models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt" +controlnet_config: "configs/sparsectrl/latent_condition.yaml" +adapter_lora_path: "models/Motion_Module/v3_sd15_adapter.ckpt" + +cfg_scale: 7.5 # in default realistic classifer-free guidance +negative_prompt: "ugly, deformed, noisy, blurry, distorted, out of focus, bad anatomy, extra limbs, poorly drawn face, poorly drawn hands, missing fingers" + +inference_steps: 100 # the total denosing step for inference +guidance_scale: 0.3 # which scale of time step to end guidance +guidance_steps: 40 # the step for guidance in inference, no more than 1000*guidance_scale, the remaining steps (inference_steps-guidance_steps) is performed without gudiance +warm_up_steps: 10 +cool_up_steps: 10 + +motion_guidance_weight: 2000 +motion_guidance_blocks: ['up_blocks.1'] + +add_noise_step: 400 \ No newline at end of file diff --git a/configs/i2v_sketch.jsonl b/configs/i2v_sketch.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..a31210e9b0621044119d9abcdd1f5dd04a55c3aa --- /dev/null +++ b/configs/i2v_sketch.jsonl @@ -0,0 +1 @@ +{"video_path":"reference_videos/sample_white_tiger.mp4", "condition_image_paths":["condition_images/scribble/lion_forest.png"], "new_prompt": "Lion, walks in the forest"} \ No newline at end of file diff --git a/configs/i2v_sketch.yaml b/configs/i2v_sketch.yaml new file mode 100644 index 0000000000000000000000000000000000000000..284b2a774f949da006d3973906b481d26f668a04 --- /dev/null +++ b/configs/i2v_sketch.yaml @@ -0,0 +1,20 @@ +motion_module: "models/Motion_Module/v3_sd15_mm.ckpt" +dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors" +model_config: "configs/model_config/model_config.yaml" +controlnet_config: "configs/sparsectrl/image_condition.yaml" +controlnet_path: "models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt" +adapter_lora_path: "models/Motion_Module/v3_sd15_adapter.ckpt" + +cfg_scale: 7.5 # in default realistic classifer-free guidance +negative_prompt: "ugly, deformed, noisy, blurry, distorted, out of focus, bad anatomy, extra limbs, poorly drawn face, poorly drawn hands, missing fingers" + +inference_steps: 200 # the total denosing step for inference +guidance_scale: 0.4 # which scale of time step to end guidance +guidance_steps: 120 # the step for guidance in inference, no more than 1000*guidance_scale, the remaining steps (inference_steps-guidance_steps) is performed without gudiance +warm_up_steps: 10 +cool_up_steps: 10 + +motion_guidance_weight: 2000 +motion_guidance_blocks: ['up_blocks.1'] + +add_noise_step: 400 \ No newline at end of file diff --git a/configs/model_config/inference-v1.yaml b/configs/model_config/inference-v1.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ab7e4be4f3b31175a9f737050b5949f103cdd339 --- /dev/null +++ b/configs/model_config/inference-v1.yaml @@ -0,0 +1,25 @@ +unet_additional_kwargs: + use_inflated_groupnorm: true # from config v3 + + + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_decoder_only: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self", "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 + zero_initialize: true # from config v3 + +noise_scheduler_kwargs: + beta_start: 0.00085 + beta_end: 0.012 + beta_schedule: "linear" + steps_offset: 1 + clip_sample: False diff --git a/configs/model_config/inference-v2.yaml b/configs/model_config/inference-v2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ce19a89686b343f1bfd94bd19c91661a3de5bc2a --- /dev/null +++ b/configs/model_config/inference-v2.yaml @@ -0,0 +1,24 @@ +unet_additional_kwargs: + use_inflated_groupnorm: true + unet_use_cross_frame_attention: false + unet_use_temporal_attention: false + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: true + motion_module_decoder_only: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self", "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 + +noise_scheduler_kwargs: + beta_start: 0.00085 + beta_end: 0.012 + beta_schedule: "linear" + steps_offset: 1 + clip_sample: False diff --git a/configs/model_config/inference-v3.yaml b/configs/model_config/inference-v3.yaml new file mode 100644 index 0000000000000000000000000000000000000000..fd9a34d7839374221548c5a39cfb1c744f96b3db --- /dev/null +++ b/configs/model_config/inference-v3.yaml @@ -0,0 +1,22 @@ +unet_additional_kwargs: + use_inflated_groupnorm: true + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_type: Vanilla + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self", "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 + zero_initialize: true + +noise_scheduler_kwargs: + beta_start: 0.00085 + beta_end: 0.012 + beta_schedule: "linear" + steps_offset: 1 + clip_sample: False diff --git a/configs/model_config/model_config copy.yaml b/configs/model_config/model_config copy.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2ddda34018c8eeeb749d0432d247eefc8b617a76 --- /dev/null +++ b/configs/model_config/model_config copy.yaml @@ -0,0 +1,22 @@ +unet_additional_kwargs: + use_inflated_groupnorm: true # from config v3 + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self", "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 + zero_initialize: true # from config v3 + +noise_scheduler_kwargs: + beta_start: 0.00085 + beta_end: 0.012 + beta_schedule: "linear" + steps_offset: 1 + clip_sample: False \ No newline at end of file diff --git a/configs/model_config/model_config.yaml b/configs/model_config/model_config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..50f901249ef3c6488db0b01d45d917818feafa84 --- /dev/null +++ b/configs/model_config/model_config.yaml @@ -0,0 +1,21 @@ +unet_additional_kwargs: + use_inflated_groupnorm: true + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self", "Temporal_Self" ] + temporal_position_encoding: true + temporal_attention_dim_div: 1 + zero_initialize: true + +noise_scheduler_kwargs: + beta_start: 0.00085 + beta_end: 0.012 + beta_schedule: "linear" + steps_offset: 1 + clip_sample: false \ No newline at end of file diff --git a/configs/model_config/model_config_public.yaml b/configs/model_config/model_config_public.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0aa988d0b2963eca02301d669c19a0f6fd9caae1 --- /dev/null +++ b/configs/model_config/model_config_public.yaml @@ -0,0 +1,25 @@ +unet_additional_kwargs: + use_inflated_groupnorm: true # from config v3 + unet_use_cross_frame_attention: false + unet_use_temporal_attention: false + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_decoder_only: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self", "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 + zero_initialize: true # from config v3 + +noise_scheduler_kwargs: + beta_start: 0.00085 + beta_end: 0.012 + beta_schedule: "linear" + steps_offset: 1 + clip_sample: False diff --git a/configs/sparsectrl/image_condition.yaml b/configs/sparsectrl/image_condition.yaml new file mode 100644 index 0000000000000000000000000000000000000000..886f7d2a6cbd805b2a33c6598a8da7cd5bc0b39b --- /dev/null +++ b/configs/sparsectrl/image_condition.yaml @@ -0,0 +1,17 @@ +controlnet_additional_kwargs: + set_noisy_sample_input_to_zero: true + use_simplified_condition_embedding: false + conditioning_channels: 3 + + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 diff --git a/configs/sparsectrl/latent_condition.yaml b/configs/sparsectrl/latent_condition.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9e1219de599cb4eb7361d6caeacbcc9eb00c16aa --- /dev/null +++ b/configs/sparsectrl/latent_condition.yaml @@ -0,0 +1,17 @@ +controlnet_additional_kwargs: + set_noisy_sample_input_to_zero: true + use_simplified_condition_embedding: true + conditioning_channels: 4 + + use_motion_module: true + motion_module_resolutions: [1,2,4,8] + motion_module_mid_block: false + motion_module_type: "Vanilla" + + motion_module_kwargs: + num_attention_heads: 8 + num_transformer_block: 1 + attention_block_types: [ "Temporal_Self" ] + temporal_position_encoding: true + temporal_position_encoding_max_len: 32 + temporal_attention_dim_div: 1 diff --git a/configs/t2v_camera.jsonl b/configs/t2v_camera.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..3e9c0dfba95a0c8aed888953c6dd857d19a7541a --- /dev/null +++ b/configs/t2v_camera.jsonl @@ -0,0 +1,12 @@ +{"video_path":"reference_videos/camera_zoom_in.mp4", "new_prompt": "Relics on the seabed", "seed": 42} +{"video_path":"reference_videos/camera_zoom_in.mp4", "new_prompt": "A road in the mountain", "seed": 42} +{"video_path":"reference_videos/camera_zoom_in.mp4", "new_prompt": "Caves, a path for exploration", "seed": 2026} +{"video_path":"reference_videos/camera_zoom_in.mp4", "new_prompt": "Railway for train"} +{"video_path":"reference_videos/camera_zoom_out.mp4", "new_prompt": "Tree, in the mountain", "seed": 2026} +{"video_path":"reference_videos/camera_zoom_out.mp4", "new_prompt": "Red car on the track", "seed": 2026} +{"video_path":"reference_videos/camera_zoom_out.mp4", "new_prompt": "Man, standing in his garden.", "seed": 2026} +{"video_path":"reference_videos/camera_1.mp4", "new_prompt": "A island, on the ocean, sunny day"} +{"video_path":"reference_videos/camera_1.mp4", "new_prompt": "A tower, with fireworks"} +{"video_path":"reference_videos/camera_pan_up.mp4", "new_prompt": "Beautiful house, around with flowers", "seed": 42} +{"video_path":"reference_videos/camera_translation_2.mp4", "new_prompt": "Forest, in winter", "seed": 2028} +{"video_path":"reference_videos/camera_pan_down.mp4", "new_prompt": "Eagle, standing in the tree", "seed": 2026} \ No newline at end of file diff --git a/configs/t2v_camera.yaml b/configs/t2v_camera.yaml new file mode 100644 index 0000000000000000000000000000000000000000..1d12b26d17ba7df5d80a1429a14e0bd9a4fdca35 --- /dev/null +++ b/configs/t2v_camera.yaml @@ -0,0 +1,19 @@ + +motion_module: "models/Motion_Module/v3_sd15_mm.ckpt" +dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors" +model_config: "configs/model_config/model_config.yaml" + +cfg_scale: 7.5 # in default realistic classifer-free guidance +negative_prompt: "bad anatomy, extra limbs, ugly, deformed, noisy, blurry, distorted, out of focus, poorly drawn face, poorly drawn hands, missing fingers" +postive_prompt: " 8k, high detailed, best quality, film grain, Fujifilm XT3" + +inference_steps: 100 # the total denosing step for inference +guidance_scale: 0.3 # which scale of time step to end guidance 0.2/40 +guidance_steps: 50 # the step for guidance in inference, no more than 1000*guidance_scale, the remaining steps (inference_steps-guidance_steps) is performed without gudiance +warm_up_steps: 10 +cool_up_steps: 10 + +motion_guidance_weight: 2000 +motion_guidance_blocks: ['up_blocks.1'] + +add_noise_step: 400 \ No newline at end of file diff --git a/configs/t2v_object.jsonl b/configs/t2v_object.jsonl new file mode 100644 index 0000000000000000000000000000000000000000..e7143d92f8ec20585402e34556846a8280ccc9b7 --- /dev/null +++ b/configs/t2v_object.jsonl @@ -0,0 +1,6 @@ +{"video_path":"reference_videos/sample_astronaut.mp4", "new_prompt": "Robot, walks in the street.","seed":59} +{"video_path":"reference_videos/sample_cat.mp4", "new_prompt": "Tiger, raises its head.", "seed": 2025} +{"video_path":"reference_videos/sample_leaves.mp4", "new_prompt": "Petals falling in the wind.","seed":3407} +{"video_path":"reference_videos/sample_fox.mp4", "new_prompt": "Cat, turns its head in the living room."} +{"video_path":"reference_videos/sample_blackswan.mp4", "new_prompt": "Duck, swims in the river.","seed":3407} +{"video_path":"reference_videos/sample_cow.mp4", "new_prompt": "Pig, drinks water on beach.","seed":3407} \ No newline at end of file diff --git a/configs/t2v_object.yaml b/configs/t2v_object.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3726f8c24e4a8812c8ce81852f503b19aa05f98d --- /dev/null +++ b/configs/t2v_object.yaml @@ -0,0 +1,19 @@ + +motion_module: "models/Motion_Module/v3_sd15_mm.ckpt" +dreambooth_path: "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors" +model_config: "configs/model_config/model_config.yaml" + +cfg_scale: 7.5 # in default realistic classifer-free guidance +negative_prompt: "bad anatomy, extra limbs, ugly, deformed, noisy, blurry, distorted, out of focus, poorly drawn face, poorly drawn hands, missing fingers" +postive_prompt: "8k, high detailed, best quality, film grain, Fujifilm XT3" + +inference_steps: 300 # the total denosing step for inference +guidance_scale: 0.4 # which scale of time step to end guidance +guidance_steps: 180 # the step for guidance in inference, no more than 1000*guidance_scale, the remaining steps (inference_steps-guidance_steps) is performed without gudiance +warm_up_steps: 10 +cool_up_steps: 10 + +motion_guidance_weight: 2000 +motion_guidance_blocks: ['up_blocks.1',] + +add_noise_step: 400 \ No newline at end of file diff --git a/environment.yaml b/environment.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5e50b14ef29d7243589b6aadb379b13fc20ca0c8 --- /dev/null +++ b/environment.yaml @@ -0,0 +1,25 @@ +name: motionclone +channels: + - pytorch + - nvidia +dependencies: + - python=3.11.3 + - pytorch=2.0.1 + - torchvision=0.15.2 + - pytorch-cuda=11.8 + - pip + - pip: + - accelerate + - diffusers==0.16.0 + - transformers==4.28.1 + - xformers==0.0.20 + - imageio[ffmpeg] + - decord==0.6.0 + - gdown + - einops + - omegaconf + - safetensors + - gradio + - wandb + - triton + - opencv-python \ No newline at end of file diff --git a/generated_videos/camera_zoom_out_Dog,_lying_on_the_grass76739_76739.mp4 b/generated_videos/camera_zoom_out_Dog,_lying_on_the_grass76739_76739.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..d1cdc9f9931f6d2a587209b58db0727787b90d18 --- /dev/null +++ b/generated_videos/camera_zoom_out_Dog,_lying_on_the_grass76739_76739.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63ecf6f1250b83d71b50352a020c97eb60223ee33813219b2bd8d7588f1ecfec +size 285735 diff --git a/generated_videos/inference_config.json b/generated_videos/inference_config.json new file mode 100644 index 0000000000000000000000000000000000000000..73c94ed5e2dffa79bca459515d5e1cd452ebc23a --- /dev/null +++ b/generated_videos/inference_config.json @@ -0,0 +1,21 @@ +motion_module: models/Motion_Module/v3_sd15_mm.ckpt +dreambooth_path: models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors +model_config: configs/model_config/model_config.yaml +controlnet_config: configs/sparsectrl/image_condition.yaml +controlnet_path: models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt +adapter_lora_path: models/Motion_Module/v3_sd15_adapter.ckpt +cfg_scale: 7.5 +negative_prompt: ugly, deformed, noisy, blurry, distorted, out of focus, bad anatomy, + extra limbs, poorly drawn face, poorly drawn hands, missing fingers +inference_steps: 200 +guidance_scale: 0.4 +guidance_steps: 120 +warm_up_steps: 10 +cool_up_steps: 10 +motion_guidance_weight: 2000 +motion_guidance_blocks: +- up_blocks.1 +add_noise_step: 400 +width: 512 +height: 512 +video_length: 16 diff --git a/generated_videos/sample_white_tiger_Lion,_walks_in_the_forest76739_76739.mp4 b/generated_videos/sample_white_tiger_Lion,_walks_in_the_forest76739_76739.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..a007b9b4f3f8e24e38f935ec87addb8ab0c3c95e --- /dev/null +++ b/generated_videos/sample_white_tiger_Lion,_walks_in_the_forest76739_76739.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ae68b549f1c6541417009d1cdd35d01286876bada07fb53a3354ad9225856cf +size 538343 diff --git a/i2v_video_sample.py b/i2v_video_sample.py new file mode 100644 index 0000000000000000000000000000000000000000..f5ee4b8f723d304575258e30a66e91eab027aabd --- /dev/null +++ b/i2v_video_sample.py @@ -0,0 +1,157 @@ +import argparse +from omegaconf import OmegaConf +import torch +from diffusers import AutoencoderKL, DDIMScheduler +from transformers import CLIPTextModel, CLIPTokenizer +from motionclone.models.unet import UNet3DConditionModel +from motionclone.models.sparse_controlnet import SparseControlNetModel +from motionclone.pipelines.pipeline_animation import AnimationPipeline +from motionclone.utils.util import load_weights, auto_download +from diffusers.utils.import_utils import is_xformers_available +from motionclone.utils.motionclone_functions import * +import json +from motionclone.utils.xformer_attention import * + + +def main(args): + + os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0)) + + config = OmegaConf.load(args.inference_config) + adopted_dtype = torch.float16 + device = "cuda" + set_all_seed(42) + + tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype) + vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype) + + config.width = config.get("W", args.W) + config.height = config.get("H", args.H) + config.video_length = config.get("L", args.L) + + if not os.path.exists(args.generated_videos_save_dir): + os.makedirs(args.generated_videos_save_dir) + OmegaConf.save(config, os.path.join(args.generated_videos_save_dir,"inference_config.json")) + + model_config = OmegaConf.load(config.get("model_config", "")) + unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(model_config.unet_additional_kwargs),).to(device).to(dtype=adopted_dtype) + + # load controlnet model + controlnet = None + if config.get("controlnet_path", "") != "": + # assert model_config.get("controlnet_images", "") != "" + assert config.get("controlnet_config", "") != "" + + unet.config.num_attention_heads = 8 + unet.config.projection_class_embeddings_input_dim = None + + controlnet_config = OmegaConf.load(config.controlnet_config) + controlnet = SparseControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})).to(device).to(dtype=adopted_dtype) + + auto_download(config.controlnet_path, is_dreambooth_lora=False) + print(f"loading controlnet checkpoint from {config.controlnet_path} ...") + controlnet_state_dict = torch.load(config.controlnet_path, map_location="cpu") + controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict + controlnet_state_dict = {name: param for name, param in controlnet_state_dict.items() if "pos_encoder.pe" not in name} + controlnet_state_dict.pop("animatediff_config", "") + controlnet.load_state_dict(controlnet_state_dict) + del controlnet_state_dict + + # set xformers + if is_xformers_available() and (not args.without_xformers): + unet.enable_xformers_memory_efficient_attention() + + pipeline = AnimationPipeline( + vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, + controlnet=controlnet, + scheduler=DDIMScheduler(**OmegaConf.to_container(model_config.noise_scheduler_kwargs)), + ).to(device) + + pipeline = load_weights( + pipeline, + # motion module + motion_module_path = config.get("motion_module", ""), + # domain adapter + adapter_lora_path = config.get("adapter_lora_path", ""), + adapter_lora_scale = config.get("adapter_lora_scale", 1.0), + # image layer + dreambooth_model_path = config.get("dreambooth_path", ""), + ).to(device) + pipeline.text_encoder.to(dtype=adopted_dtype) + + # customized functions in motionclone_functions + pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler) + pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler) + pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet) + pipeline.sample_video = sample_video.__get__(pipeline) + pipeline.single_step_video = single_step_video.__get__(pipeline) + pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline) + pipeline.add_noise = add_noise.__get__(pipeline) + pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline) + pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline) + + for param in pipeline.unet.parameters(): + param.requires_grad = False + for param in pipeline.controlnet.parameters(): + param.requires_grad = False + + pipeline.input_config, pipeline.unet.input_config = config, config + pipeline.unet = prep_unet_attention(pipeline.unet,pipeline.input_config.motion_guidance_blocks) + pipeline.unet = prep_unet_conv(pipeline.unet) + pipeline.scheduler.customized_set_timesteps(config.inference_steps, config.guidance_steps,config.guidance_scale,device=device,timestep_spacing_type = "uneven") + + with open(args.examples, 'r') as files: + for line in files: + # prepare infor of each case + example_infor = json.loads(line) + config.video_path = example_infor["video_path"] + config.condition_image_path_list = example_infor["condition_image_paths"] + config.image_index = example_infor.get("image_index",[0]) + assert len(config.image_index) == len(config.condition_image_path_list) + config.new_prompt = example_infor["new_prompt"] + config.get("positive_prompt", "") + config.controlnet_scale = example_infor.get("controlnet_scale", 1.0) + pipeline.input_config, pipeline.unet.input_config = config, config # update config + + # perform motion representation extraction + seed_motion = seed_motion = example_infor.get("seed", args.default_seed) + generator = torch.Generator(device=pipeline.device) + generator.manual_seed(seed_motion) + if not os.path.exists(args.motion_representation_save_dir): + os.makedirs(args.motion_representation_save_dir) + motion_representation_path = os.path.join(args.motion_representation_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] + '.pt') + pipeline.obtain_motion_representation(generator= generator, motion_representation_path = motion_representation_path, use_controlnet=True,) + + # perform video generation + seed = seed_motion # can assign other seed here + generator = torch.Generator(device=pipeline.device) + generator.manual_seed(seed) + pipeline.input_config.seed = seed + videos = pipeline.sample_video(generator = generator, add_controlnet=True,) + + videos = rearrange(videos, "b c f h w -> b f h w c") + save_path = os.path.join(args.generated_videos_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] + + "_" + config.new_prompt.strip().replace(' ', '_') + str(seed_motion) + "_" +str(seed)+'.mp4') + videos_uint8 = (videos[0] * 255).astype(np.uint8) + imageio.mimwrite(save_path, videos_uint8, fps=8) + print(save_path,"is done") + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion",) + + parser.add_argument("--inference_config", type=str, default="configs/i2v_sketch.yaml") + parser.add_argument("--examples", type=str, default="configs/i2v_sketch.jsonl") + parser.add_argument("--motion-representation-save-dir", type=str, default="motion_representation/") + parser.add_argument("--generated-videos-save-dir", type=str, default="generated_videos/") + + parser.add_argument("--visible_gpu", type=str, default=None) + parser.add_argument("--default-seed", type=int, default=76739) + parser.add_argument("--L", type=int, default=16) + parser.add_argument("--W", type=int, default=512) + parser.add_argument("--H", type=int, default=512) + + parser.add_argument("--without-xformers", action="store_true") + + args = parser.parse_args() + main(args) diff --git a/models/Motion_Module/Put motion module checkpoints here.txt b/models/Motion_Module/Put motion module checkpoints here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/motionclone/models/__pycache__/attention.cpython-310.pyc b/motionclone/models/__pycache__/attention.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea54f8caca44ea53ba0ead2c63c1752ce6f24624 Binary files /dev/null and b/motionclone/models/__pycache__/attention.cpython-310.pyc differ diff --git a/motionclone/models/__pycache__/attention.cpython-38.pyc b/motionclone/models/__pycache__/attention.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c6fa4ec26e7856ab053c249aa1443844c29a6bfb Binary files /dev/null and b/motionclone/models/__pycache__/attention.cpython-38.pyc differ diff --git a/motionclone/models/__pycache__/motion_module.cpython-310.pyc b/motionclone/models/__pycache__/motion_module.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..408746bf9bb19b24da3ae21fc247ba474b0504cf Binary files /dev/null and b/motionclone/models/__pycache__/motion_module.cpython-310.pyc differ diff --git a/motionclone/models/__pycache__/motion_module.cpython-38.pyc b/motionclone/models/__pycache__/motion_module.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b290242c4b1a8a7c0f56a7dac3d87ac4da4b83e Binary files /dev/null and b/motionclone/models/__pycache__/motion_module.cpython-38.pyc differ diff --git a/motionclone/models/__pycache__/resnet.cpython-310.pyc b/motionclone/models/__pycache__/resnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2f6f281b38a70fd2684ff18a53cb147aab8f0f7e Binary files /dev/null and b/motionclone/models/__pycache__/resnet.cpython-310.pyc differ diff --git a/motionclone/models/__pycache__/resnet.cpython-38.pyc b/motionclone/models/__pycache__/resnet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c5b9a84748436d7561a1df834bbad22ec3afa747 Binary files /dev/null and b/motionclone/models/__pycache__/resnet.cpython-38.pyc differ diff --git a/motionclone/models/__pycache__/sparse_controlnet.cpython-38.pyc b/motionclone/models/__pycache__/sparse_controlnet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d010ea139388883ee27d631bd95571c4d88a706a Binary files /dev/null and b/motionclone/models/__pycache__/sparse_controlnet.cpython-38.pyc differ diff --git a/motionclone/models/__pycache__/unet.cpython-310.pyc b/motionclone/models/__pycache__/unet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07d24c4b07fdf2c54e773fc5395e8dba92ae7a44 Binary files /dev/null and b/motionclone/models/__pycache__/unet.cpython-310.pyc differ diff --git a/motionclone/models/__pycache__/unet.cpython-38.pyc b/motionclone/models/__pycache__/unet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..71f6558a171629833ee59f7119d44e82d9ea1df6 Binary files /dev/null and b/motionclone/models/__pycache__/unet.cpython-38.pyc differ diff --git a/motionclone/models/__pycache__/unet_blocks.cpython-310.pyc b/motionclone/models/__pycache__/unet_blocks.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2bdceffe562d44da52d7e7075fe4428c8a4c9ba Binary files /dev/null and b/motionclone/models/__pycache__/unet_blocks.cpython-310.pyc differ diff --git a/motionclone/models/__pycache__/unet_blocks.cpython-38.pyc b/motionclone/models/__pycache__/unet_blocks.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a051169a9b4d3e3a2a94cfac9130469d94778689 Binary files /dev/null and b/motionclone/models/__pycache__/unet_blocks.cpython-38.pyc differ diff --git a/motionclone/models/attention.py b/motionclone/models/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..aff141d29a8ad89f2f896d56bee9e9775afe3b2f --- /dev/null +++ b/motionclone/models/attention.py @@ -0,0 +1,611 @@ +# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py + +from dataclasses import dataclass +from typing import Optional + +import torch +import torch.nn.functional as F +from torch import nn + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.modeling_utils import ModelMixin +from diffusers.utils import BaseOutput +from diffusers.utils.import_utils import is_xformers_available +from diffusers.models.attention import FeedForward, AdaLayerNorm + +from einops import rearrange, repeat +import pdb + +@dataclass +class Transformer3DModelOutput(BaseOutput): + sample: torch.FloatTensor + + +if is_xformers_available(): + import xformers + import xformers.ops +else: + xformers = None + + +class Transformer3DModel(ModelMixin, ConfigMixin): + @register_to_config + def __init__( + self, + num_attention_heads: int = 16, + attention_head_dim: int = 88, + in_channels: Optional[int] = None, + num_layers: int = 1, + dropout: float = 0.0, + norm_num_groups: int = 32, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + activation_fn: str = "geglu", + num_embeds_ada_norm: Optional[int] = None, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + + unet_use_cross_frame_attention=None, + unet_use_temporal_attention=None, + ): + super().__init__() + self.use_linear_projection = use_linear_projection + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + + # Define input layers + self.in_channels = in_channels + + self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) + if use_linear_projection: + self.proj_in = nn.Linear(in_channels, inner_dim) + else: + self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + + # Define transformers blocks + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + num_attention_heads, + attention_head_dim, + dropout=dropout, + cross_attention_dim=cross_attention_dim, + activation_fn=activation_fn, + num_embeds_ada_norm=num_embeds_ada_norm, + attention_bias=attention_bias, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + ) + for d in range(num_layers) + ] + ) + + # 4. Define output layers + if use_linear_projection: + self.proj_out = nn.Linear(in_channels, inner_dim) + else: + self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): + # Input + assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." + video_length = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) + + batch, channel, height, weight = hidden_states.shape + residual = hidden_states + + hidden_states = self.norm(hidden_states) + if not self.use_linear_projection: + hidden_states = self.proj_in(hidden_states) + inner_dim = hidden_states.shape[1] + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) + else: + inner_dim = hidden_states.shape[1] + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) + hidden_states = self.proj_in(hidden_states) + + # Blocks + for block in self.transformer_blocks: + hidden_states = block( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + timestep=timestep, + video_length=video_length + ) + + # Output + if not self.use_linear_projection: + hidden_states = ( + hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() + ) + hidden_states = self.proj_out(hidden_states) + else: + hidden_states = self.proj_out(hidden_states) + hidden_states = ( + hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() + ) + + output = hidden_states + residual + + output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) + if not return_dict: + return (output,) + + return Transformer3DModelOutput(sample=output) + + +class BasicTransformerBlock(nn.Module): + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + dropout=0.0, + cross_attention_dim: Optional[int] = None, + activation_fn: str = "geglu", + num_embeds_ada_norm: Optional[int] = None, + attention_bias: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + + unet_use_cross_frame_attention = None, + unet_use_temporal_attention = None, + ): + super().__init__() + self.only_cross_attention = only_cross_attention + self.use_ada_layer_norm = num_embeds_ada_norm is not None + self.unet_use_cross_frame_attention = unet_use_cross_frame_attention + self.unet_use_temporal_attention = unet_use_temporal_attention + + # SC-Attn + assert unet_use_cross_frame_attention is not None + if unet_use_cross_frame_attention: + self.attn1 = SparseCausalAttention2D( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + cross_attention_dim=cross_attention_dim if only_cross_attention else None, + upcast_attention=upcast_attention, + ) + else: + self.attn1 = CrossAttention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + ) + self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) + + # Cross-Attn + if cross_attention_dim is not None: + self.attn2 = CrossAttention( + query_dim=dim, + cross_attention_dim=cross_attention_dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + ) + else: + self.attn2 = None + + if cross_attention_dim is not None: + self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) + else: + self.norm2 = None + + # Feed-forward + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) + self.norm3 = nn.LayerNorm(dim) + + # Temp-Attn + assert unet_use_temporal_attention is not None + if unet_use_temporal_attention: + self.attn_temp = CrossAttention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + ) + nn.init.zeros_(self.attn_temp.to_out[0].weight.data) + self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) + + def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, op=None): + if not is_xformers_available(): + print("Here is how to install it") + raise ModuleNotFoundError( + "Refer to https://github.com/facebookresearch/xformers for more information on how to install" + " xformers", + name="xformers", + ) + elif not torch.cuda.is_available(): + raise ValueError( + "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" + " available for GPU " + ) + else: + try: + # Make sure we can run the memory efficient attention + _ = xformers.ops.memory_efficient_attention( + torch.randn((1, 2, 40), device="cuda"), + torch.randn((1, 2, 40), device="cuda"), + torch.randn((1, 2, 40), device="cuda"), + ) + except Exception as e: + raise e + self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers + if self.attn2 is not None: + self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers + # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers + + def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): + # SparseCausal-Attention + norm_hidden_states = ( + self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) + ) + + # if self.only_cross_attention: + # hidden_states = ( + # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states + # ) + # else: + # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states + + # pdb.set_trace() + if self.unet_use_cross_frame_attention: + hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states + else: + hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states + + if self.attn2 is not None: + # Cross-Attention + norm_hidden_states = ( + self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) + ) + hidden_states = ( + self.attn2( + norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask + ) + + hidden_states + ) + + # Feed-forward + hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states + + # Temporal-Attention + if self.unet_use_temporal_attention: + d = hidden_states.shape[1] + hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) + norm_hidden_states = ( + self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) + ) + hidden_states = self.attn_temp(norm_hidden_states) + hidden_states + hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) + + return hidden_states + +class CrossAttention(nn.Module): + r""" + A cross attention layer. + + Parameters: + query_dim (`int`): The number of channels in the query. + cross_attention_dim (`int`, *optional*): + The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. + heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. + dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + bias (`bool`, *optional*, defaults to False): + Set to `True` for the query, key, and value linear layers to contain a bias parameter. + """ + + def __init__( + self, + query_dim: int, + cross_attention_dim: Optional[int] = None, + heads: int = 8, + dim_head: int = 64, + dropout: float = 0.0, + bias=False, + upcast_attention: bool = False, + upcast_softmax: bool = False, + added_kv_proj_dim: Optional[int] = None, + norm_num_groups: Optional[int] = None, + ): + super().__init__() + inner_dim = dim_head * heads + cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim + self.upcast_attention = upcast_attention + self.upcast_softmax = upcast_softmax + + self.scale = dim_head**-0.5 + + self.heads = heads + # for slice_size > 0 the attention score computation + # is split across the batch axis to save memory + # You can set slice_size with `set_attention_slice` + self.sliceable_head_dim = heads + self._slice_size = None + self._use_memory_efficient_attention_xformers = False + self.added_kv_proj_dim = added_kv_proj_dim + + #### add processer + self.processor = None + + if norm_num_groups is not None: + self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) + else: + self.group_norm = None + + self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) + self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) + self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) + + if self.added_kv_proj_dim is not None: + self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) + self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) + + self.to_out = nn.ModuleList([]) + self.to_out.append(nn.Linear(inner_dim, query_dim)) + self.to_out.append(nn.Dropout(dropout)) + + def reshape_heads_to_batch_dim(self, tensor): + batch_size, seq_len, dim = tensor.shape + head_size = self.heads + tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) + return tensor + + def reshape_batch_dim_to_heads(self, tensor): + batch_size, seq_len, dim = tensor.shape + head_size = self.heads + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) + return tensor + + def set_attention_slice(self, slice_size): + if slice_size is not None and slice_size > self.sliceable_head_dim: + raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") + + self._slice_size = slice_size + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): + batch_size, sequence_length, _ = hidden_states.shape + + encoder_hidden_states = encoder_hidden_states + + if self.group_norm is not None: + hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = self.to_q(hidden_states) + dim = query.shape[-1] + # query = self.reshape_heads_to_batch_dim(query) # move backwards + + if self.added_kv_proj_dim is not None: + key = self.to_k(hidden_states) + value = self.to_v(hidden_states) + encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) + + ######record###### record before reshape heads to batch dim + if self.processor is not None: + self.processor.record_qkv(self, hidden_states, query, key, value, attention_mask) + ################## + + key = self.reshape_heads_to_batch_dim(key) + value = self.reshape_heads_to_batch_dim(value) + encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) + + key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) + else: + encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states + key = self.to_k(encoder_hidden_states) + value = self.to_v(encoder_hidden_states) + + ######record###### + if self.processor is not None: + self.processor.record_qkv(self, hidden_states, query, key, value, attention_mask) + ################## + + key = self.reshape_heads_to_batch_dim(key) + value = self.reshape_heads_to_batch_dim(value) + + query = self.reshape_heads_to_batch_dim(query) # reshape query + + if attention_mask is not None: + if attention_mask.shape[-1] != query.shape[1]: + target_length = query.shape[1] + attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) + attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) + + ######record###### + if self.processor is not None: + self.processor.record_attn_mask(self, hidden_states, query, key, value, attention_mask) + ################## + + # attention, what we cannot get enough of + if self._use_memory_efficient_attention_xformers: + hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) + # Some versions of xformers return output in fp32, cast it back to the dtype of the input + hidden_states = hidden_states.to(query.dtype) + else: + if self._slice_size is None or query.shape[0] // self._slice_size == 1: + hidden_states = self._attention(query, key, value, attention_mask) + else: + hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) + + # linear proj + hidden_states = self.to_out[0](hidden_states) + + # dropout + hidden_states = self.to_out[1](hidden_states) + return hidden_states + + def _attention(self, query, key, value, attention_mask=None): + if self.upcast_attention: + query = query.float() + key = key.float() + + attention_scores = torch.baddbmm( + torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), + query, + key.transpose(-1, -2), + beta=0, + alpha=self.scale, + ) + + if attention_mask is not None: + attention_scores = attention_scores + attention_mask + + if self.upcast_softmax: + attention_scores = attention_scores.float() + + attention_probs = attention_scores.softmax(dim=-1) + + # cast back to the original dtype + attention_probs = attention_probs.to(value.dtype) + + # compute attention output + hidden_states = torch.bmm(attention_probs, value) + + # reshape hidden_states + hidden_states = self.reshape_batch_dim_to_heads(hidden_states) + return hidden_states + + def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): + batch_size_attention = query.shape[0] + hidden_states = torch.zeros( + (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype + ) + slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] + for i in range(hidden_states.shape[0] // slice_size): + start_idx = i * slice_size + end_idx = (i + 1) * slice_size + + query_slice = query[start_idx:end_idx] + key_slice = key[start_idx:end_idx] + + if self.upcast_attention: + query_slice = query_slice.float() + key_slice = key_slice.float() + + attn_slice = torch.baddbmm( + torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), + query_slice, + key_slice.transpose(-1, -2), + beta=0, + alpha=self.scale, + ) + + if attention_mask is not None: + attn_slice = attn_slice + attention_mask[start_idx:end_idx] + + if self.upcast_softmax: + attn_slice = attn_slice.float() + + attn_slice = attn_slice.softmax(dim=-1) + + # cast back to the original dtype + attn_slice = attn_slice.to(value.dtype) + attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) + + hidden_states[start_idx:end_idx] = attn_slice + + # reshape hidden_states + hidden_states = self.reshape_batch_dim_to_heads(hidden_states) + return hidden_states + + def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): + # TODO attention_mask + query = query.contiguous() + key = key.contiguous() + value = value.contiguous() + hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) + hidden_states = self.reshape_batch_dim_to_heads(hidden_states) + return hidden_states + + def set_processor(self, processor: "AttnProcessor") -> None: + r""" + Set the attention processor to use. + + Args: + processor (`AttnProcessor`): + The attention processor to use. + """ + # if current processor is in `self._modules` and if passed `processor` is not, we need to + # pop `processor` from `self._modules` + if ( + hasattr(self, "processor") + and isinstance(self.processor, torch.nn.Module) + and not isinstance(processor, torch.nn.Module) + ): + logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") + self._modules.pop("processor") + + self.processor = processor + + def get_attention_scores( + self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None + ) -> torch.Tensor: + r""" + Compute the attention scores. + + Args: + query (`torch.Tensor`): The query tensor. + key (`torch.Tensor`): The key tensor. + attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. + + Returns: + `torch.Tensor`: The attention probabilities/scores. + """ + dtype = query.dtype + if self.upcast_attention: + query = query.float() + key = key.float() + + if attention_mask is None: + baddbmm_input = torch.empty( + query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device + ) + beta = 0 + else: + baddbmm_input = attention_mask + beta = 1 + + + + attention_scores = torch.baddbmm( + baddbmm_input, + query, + key.transpose(-1, -2), + beta=beta, + alpha=self.scale, + ) + del baddbmm_input + + if self.upcast_softmax: + attention_scores = attention_scores.float() + + attention_probs = attention_scores.softmax(dim=-1) + del attention_scores + + attention_probs = attention_probs.to(dtype) + + return attention_probs diff --git a/motionclone/models/motion_module.py b/motionclone/models/motion_module.py new file mode 100644 index 0000000000000000000000000000000000000000..4d6ac89706d27f20d6c29467410a2938460025f9 --- /dev/null +++ b/motionclone/models/motion_module.py @@ -0,0 +1,347 @@ +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import numpy as np +import torch.nn.functional as F +from torch import nn +import torchvision + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.modeling_utils import ModelMixin +from diffusers.utils import BaseOutput +from diffusers.utils.import_utils import is_xformers_available +from diffusers.models.attention import FeedForward +from .attention import CrossAttention + +from einops import rearrange, repeat +import math + + +def zero_module(module): + # Zero out the parameters of a module and return it. + for p in module.parameters(): + p.detach().zero_() + return module + + +@dataclass +class TemporalTransformer3DModelOutput(BaseOutput): + sample: torch.FloatTensor + + +if is_xformers_available(): + import xformers + import xformers.ops +else: + xformers = None + + +def get_motion_module( # 只能返回VanillaTemporalModule类 + in_channels, + motion_module_type: str, + motion_module_kwargs: dict +): + if motion_module_type == "Vanilla": + return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) + else: + raise ValueError + + +class VanillaTemporalModule(nn.Module): + def __init__( + self, + in_channels, + num_attention_heads = 8, + num_transformer_block = 2, + attention_block_types =( "Temporal_Self", "Temporal_Self" ), + cross_frame_attention_mode = None, + temporal_position_encoding = False, + temporal_position_encoding_max_len = 32, + temporal_attention_dim_div = 1, + zero_initialize = True, + ): + super().__init__() + + self.temporal_transformer = TemporalTransformer3DModel( + in_channels=in_channels, + num_attention_heads=num_attention_heads, + attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, + num_layers=num_transformer_block, + attention_block_types=attention_block_types, + cross_frame_attention_mode=cross_frame_attention_mode, + temporal_position_encoding=temporal_position_encoding, + temporal_position_encoding_max_len=temporal_position_encoding_max_len, + ) + + if zero_initialize: + self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) + + def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None): + hidden_states = input_tensor + hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) + + output = hidden_states + return output + + +class TemporalTransformer3DModel(nn.Module): + def __init__( + self, + in_channels, + num_attention_heads, + attention_head_dim, + + num_layers, + attention_block_types = ( "Temporal_Self", "Temporal_Self", ), # 两个TempAttn + dropout = 0.0, + norm_num_groups = 32, + cross_attention_dim = 768, + activation_fn = "geglu", + attention_bias = False, + upcast_attention = False, + + cross_frame_attention_mode = None, + temporal_position_encoding = False, + temporal_position_encoding_max_len = 24, + ): + super().__init__() + + inner_dim = num_attention_heads * attention_head_dim + + self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) + self.proj_in = nn.Linear(in_channels, inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + TemporalTransformerBlock( + dim=inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + attention_block_types=attention_block_types, + dropout=dropout, + norm_num_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + activation_fn=activation_fn, + attention_bias=attention_bias, + upcast_attention=upcast_attention, + cross_frame_attention_mode=cross_frame_attention_mode, + temporal_position_encoding=temporal_position_encoding, + temporal_position_encoding_max_len=temporal_position_encoding_max_len, + ) + for d in range(num_layers) + ] + ) + self.proj_out = nn.Linear(inner_dim, in_channels) + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): + assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." + video_length = hidden_states.shape[2] + hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") + + batch, channel, height, weight = hidden_states.shape + residual = hidden_states + + hidden_states = self.norm(hidden_states) + inner_dim = hidden_states.shape[1] + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) + hidden_states = self.proj_in(hidden_states) + + # Transformer Blocks + for block in self.transformer_blocks: + hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length) + + # output + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() + + output = hidden_states + residual + output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) + + return output + + +class TemporalTransformerBlock(nn.Module): + def __init__( + self, + dim, + num_attention_heads, + attention_head_dim, + attention_block_types = ( "Temporal_Self", "Temporal_Self", ), + dropout = 0.0, + norm_num_groups = 32, + cross_attention_dim = 768, + activation_fn = "geglu", + attention_bias = False, + upcast_attention = False, + cross_frame_attention_mode = None, + temporal_position_encoding = False, + temporal_position_encoding_max_len = 24, + ): + super().__init__() + + attention_blocks = [] + norms = [] + + for block_name in attention_block_types: + attention_blocks.append( + VersatileAttention( + attention_mode=block_name.split("_")[0], + cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, + + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + + cross_frame_attention_mode=cross_frame_attention_mode, + temporal_position_encoding=temporal_position_encoding, + temporal_position_encoding_max_len=temporal_position_encoding_max_len, + ) + ) + norms.append(nn.LayerNorm(dim)) + + self.attention_blocks = nn.ModuleList(attention_blocks) + self.norms = nn.ModuleList(norms) + + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) + self.ff_norm = nn.LayerNorm(dim) + + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): + for attention_block, norm in zip(self.attention_blocks, self.norms): + norm_hidden_states = norm(hidden_states) + hidden_states = attention_block( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, + video_length=video_length, + ) + hidden_states + + hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states + + output = hidden_states + return output + + +class PositionalEncoding(nn.Module): + def __init__( + self, + d_model, + dropout = 0., + max_len = 24 + ): + super().__init__() + self.dropout = nn.Dropout(p=dropout) + position = torch.arange(max_len).unsqueeze(1) + div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) + pe = torch.zeros(1, max_len, d_model) + pe[0, :, 0::2] = torch.sin(position * div_term) + pe[0, :, 1::2] = torch.cos(position * div_term) + # self.register_buffer('pe', pe) + self.register_buffer('pe', pe, persistent=False) + + def forward(self, x): + x = x + self.pe[:, :x.size(1)] + return self.dropout(x) + + +class VersatileAttention(CrossAttention): # 继承CrossAttention类,不需要在额外写set_processor功能 + def __init__( + self, + attention_mode = None, + cross_frame_attention_mode = None, + temporal_position_encoding = False, + temporal_position_encoding_max_len = 24, + *args, **kwargs + ): + super().__init__(*args, **kwargs) + assert attention_mode == "Temporal" + + self.attention_mode = attention_mode + self.is_cross_attention = kwargs["cross_attention_dim"] is not None + + self.pos_encoder = PositionalEncoding( + kwargs["query_dim"], + dropout=0., + max_len=temporal_position_encoding_max_len + ) if (temporal_position_encoding and attention_mode == "Temporal") else None + + def extra_repr(self): + return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" + + def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): + batch_size, sequence_length, _ = hidden_states.shape + + if self.attention_mode == "Temporal": + d = hidden_states.shape[1] + hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) + + if self.pos_encoder is not None: + hidden_states = self.pos_encoder(hidden_states) + + encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states + else: + raise NotImplementedError + + encoder_hidden_states = encoder_hidden_states + + if self.group_norm is not None: + hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = self.to_q(hidden_states) + dim = query.shape[-1] + # query = self.reshape_heads_to_batch_dim(query) # move backwards + + if self.added_kv_proj_dim is not None: + raise NotImplementedError + + encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states + key = self.to_k(encoder_hidden_states) + value = self.to_v(encoder_hidden_states) + + ######record###### record before reshape heads to batch dim + if self.processor is not None: + self.processor.record_qkv(self, hidden_states, query, key, value, attention_mask) + ################## + + key = self.reshape_heads_to_batch_dim(key) + value = self.reshape_heads_to_batch_dim(value) + + query = self.reshape_heads_to_batch_dim(query) # reshape query here + + if attention_mask is not None: + if attention_mask.shape[-1] != query.shape[1]: + target_length = query.shape[1] + attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) + attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) + + ######record###### + # if self.processor is not None: + # self.processor.record_attn_mask(self, hidden_states, query, key, value, attention_mask) + ################## + + # attention, what we cannot get enough of + if self._use_memory_efficient_attention_xformers: + hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) + # Some versions of xformers return output in fp32, cast it back to the dtype of the input + hidden_states = hidden_states.to(query.dtype) + else: + if self._slice_size is None or query.shape[0] // self._slice_size == 1: + hidden_states = self._attention(query, key, value, attention_mask) + else: + hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) + + # linear proj + hidden_states = self.to_out[0](hidden_states) + + # dropout + hidden_states = self.to_out[1](hidden_states) + + if self.attention_mode == "Temporal": + hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) + + return hidden_states + + diff --git a/motionclone/models/resnet.py b/motionclone/models/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..9e77c7e89408239b0b7e495dbee3d4709b364873 --- /dev/null +++ b/motionclone/models/resnet.py @@ -0,0 +1,218 @@ +# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from einops import rearrange + + +class InflatedConv3d(nn.Conv2d): + def forward(self, x): + video_length = x.shape[2] + + x = rearrange(x, "b c f h w -> (b f) c h w") + x = super().forward(x) + x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) + + return x + + +class InflatedGroupNorm(nn.GroupNorm): + def forward(self, x): + video_length = x.shape[2] + + x = rearrange(x, "b c f h w -> (b f) c h w") + x = super().forward(x) + x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) + + return x + + +class Upsample3D(nn.Module): + def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_conv_transpose = use_conv_transpose + self.name = name + + conv = None + if use_conv_transpose: + raise NotImplementedError + elif use_conv: + self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) + + def forward(self, hidden_states, output_size=None): + assert hidden_states.shape[1] == self.channels + + if self.use_conv_transpose: + raise NotImplementedError + + # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 + dtype = hidden_states.dtype + if dtype == torch.bfloat16: + hidden_states = hidden_states.to(torch.float32) + + # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 + if hidden_states.shape[0] >= 64: + hidden_states = hidden_states.contiguous() + + # if `output_size` is passed we force the interpolation output + # size and do not make use of `scale_factor=2` + if output_size is None: + hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") + else: + hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") + + # If the input is bfloat16, we cast back to bfloat16 + if dtype == torch.bfloat16: + hidden_states = hidden_states.to(dtype) + + # if self.use_conv: + # if self.name == "conv": + # hidden_states = self.conv(hidden_states) + # else: + # hidden_states = self.Conv2d_0(hidden_states) + hidden_states = self.conv(hidden_states) + + return hidden_states + + +class Downsample3D(nn.Module): + def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.padding = padding + stride = 2 + self.name = name + + if use_conv: + self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) + else: + raise NotImplementedError + + def forward(self, hidden_states): + assert hidden_states.shape[1] == self.channels + if self.use_conv and self.padding == 0: + raise NotImplementedError + + assert hidden_states.shape[1] == self.channels + hidden_states = self.conv(hidden_states) + + return hidden_states + + +class ResnetBlock3D(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout=0.0, + temb_channels=512, + groups=32, + groups_out=None, + pre_norm=True, + eps=1e-6, + non_linearity="swish", + time_embedding_norm="default", + output_scale_factor=1.0, + use_in_shortcut=None, + use_inflated_groupnorm=False, + ): + super().__init__() + self.pre_norm = pre_norm + self.pre_norm = True + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.time_embedding_norm = time_embedding_norm + self.output_scale_factor = output_scale_factor + self.upsample = self.downsample = None + + if groups_out is None: + groups_out = groups + + assert use_inflated_groupnorm != None + if use_inflated_groupnorm: + self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) + else: + self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) + + self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + + if temb_channels is not None: + if self.time_embedding_norm == "default": + time_emb_proj_out_channels = out_channels + elif self.time_embedding_norm == "scale_shift": + time_emb_proj_out_channels = out_channels * 2 + else: + raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") + + self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) + else: + self.time_emb_proj = None + + if use_inflated_groupnorm: + self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) + else: + self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) + + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + + if non_linearity == "swish": + self.nonlinearity = lambda x: F.silu(x) + elif non_linearity == "mish": + self.nonlinearity = Mish() + elif non_linearity == "silu": + self.nonlinearity = nn.SiLU() + + self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut + + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, input_tensor, temb): + hidden_states = input_tensor + + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.conv1(hidden_states) + + if temb is not None: + temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] + + if temb is not None and self.time_embedding_norm == "default": + hidden_states = hidden_states + temb + + hidden_states = self.norm2(hidden_states) + + if temb is not None and self.time_embedding_norm == "scale_shift": + scale, shift = torch.chunk(temb, 2, dim=1) + hidden_states = hidden_states * (1 + scale) + shift + + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + + output_tensor = (input_tensor + hidden_states) / self.output_scale_factor + + return output_tensor + + +class Mish(torch.nn.Module): + def forward(self, hidden_states): + return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) \ No newline at end of file diff --git a/motionclone/models/scheduler.py b/motionclone/models/scheduler.py new file mode 100644 index 0000000000000000000000000000000000000000..b298e57371845a27e0072bf63b54432d80ac8a3e --- /dev/null +++ b/motionclone/models/scheduler.py @@ -0,0 +1,155 @@ +from typing import Optional, Tuple, Union + +import torch +from diffusers import DDIMScheduler +from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput +from diffusers.utils.torch_utils import randn_tensor + + +class CustomDDIMScheduler(DDIMScheduler): + @torch.no_grad() + def step( + self, + model_output: torch.FloatTensor, + timestep: int, + sample: torch.FloatTensor, + eta: float = 0.0, + use_clipped_model_output: bool = False, + generator=None, + variance_noise: Optional[torch.FloatTensor] = None, + return_dict: bool = True, + + # Guidance parameters + score=None, + guidance_scale=0.0, + indices=None, # [0] + + ) -> Union[DDIMSchedulerOutput, Tuple]: + """ + Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion + process from the learned model outputs (most often the predicted noise). + + Args: + model_output (`torch.FloatTensor`): direct output from learned diffusion model. + timestep (`int`): current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + current instance of sample being created by diffusion process. + eta (`float`): weight of noise for added noise in diffusion step. + use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped + predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when + `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would + coincide with the one provided as input and `use_clipped_model_output` will have not effect. + generator: random number generator. + variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we + can directly provide the noise for the variance itself. This is useful for methods such as + CycleDiffusion. (https://arxiv.org/abs/2210.05559) + return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class + + Returns: + [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: + [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When + returning a tuple, the first element is the sample tensor. + + """ + if self.num_inference_steps is None: + raise ValueError( + "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" + ) + + # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf + # Ideally, read DDIM paper in-detail understanding + + # Notation ( -> + # - pred_noise_t -> e_theta(x_t, t) + # - pred_original_sample -> f_theta(x_t, t) or x_0 + # - std_dev_t -> sigma_t + # - eta -> η + # - pred_sample_direction -> "direction pointing to x_t" + # - pred_prev_sample -> "x_t-1" + + + # Support IF models + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: + model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) + else: + predicted_variance = None + + # 1. get previous step value (=t-1) + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + + # 2. compute alphas, betas + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + + beta_prod_t = 1 - alpha_prod_t + + # 3. compute predicted original sample from predicted noise also called + # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + if self.config.prediction_type == "epsilon": + pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) + pred_epsilon = model_output + elif self.config.prediction_type == "sample": + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) + elif self.config.prediction_type == "v_prediction": + pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output + pred_epsilon = (alpha_prod_t ** 0.5) * model_output + (beta_prod_t ** 0.5) * sample + else: + raise ValueError( + f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" + " `v_prediction`" + ) + + # 4. Clip or threshold "predicted x_0" + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp( + -self.config.clip_sample_range, self.config.clip_sample_range + ) + + # 5. compute variance: "sigma_t(η)" -> see formula (16) + # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) + variance = self._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** (0.5) + + if use_clipped_model_output: + # the pred_epsilon is always re-derived from the clipped x_0 in Glide + pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) # [2, 4, 64, 64] + + # 6. apply guidance following the formula (14) from https://arxiv.org/pdf/2105.05233.pdf + if score is not None and guidance_scale > 0.0: # indices指定了应用guidance的位置,此处indices = [0] + if indices is not None: + # import pdb; pdb.set_trace() + assert pred_epsilon[indices].shape == score.shape, "pred_epsilon[indices].shape != score.shape" + pred_epsilon[indices] = pred_epsilon[indices] - guidance_scale * (1 - alpha_prod_t) ** (0.5) * score # 只修改了其中第一个[1, 4, 64, 64]的部分 + else: + assert pred_epsilon.shape == score.shape + pred_epsilon = pred_epsilon - guidance_scale * (1 - alpha_prod_t) ** (0.5) * score + # + + # 7. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * pred_epsilon # [2, 4, 64, 64] + + # 8. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction # [2, 4, 64, 64] + + if eta > 0: + if variance_noise is not None and generator is not None: + raise ValueError( + "Cannot pass both generator and variance_noise. Please make sure that either `generator` or" + " `variance_noise` stays `None`." + ) + + if variance_noise is None: + variance_noise = randn_tensor( + model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype + ) + variance = std_dev_t * variance_noise # 最后还要再加一些随机噪声 + + prev_sample = prev_sample + variance # [2, 4, 64, 64] + self.pred_epsilon = pred_epsilon + if not return_dict: + return (prev_sample,) + + return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) diff --git a/motionclone/models/sparse_controlnet.py b/motionclone/models/sparse_controlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..18ae386dad6b10334b09b4846e23666b2410d113 --- /dev/null +++ b/motionclone/models/sparse_controlnet.py @@ -0,0 +1,593 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Changes were made to this source code by Yuwei Guo. +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import functional as F + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.utils import BaseOutput, logging +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from diffusers.models.modeling_utils import ModelMixin + + +from .unet_blocks import ( + CrossAttnDownBlock3D, + DownBlock3D, + UNetMidBlock3DCrossAttn, + get_down_block, +) +from einops import repeat, rearrange +from .resnet import InflatedConv3d + +from diffusers.models.unet_2d_condition import UNet2DConditionModel + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class SparseControlNetOutput(BaseOutput): + down_block_res_samples: Tuple[torch.Tensor] + mid_block_res_sample: torch.Tensor + + +class SparseControlNetConditioningEmbedding(nn.Module): + def __init__( + self, + conditioning_embedding_channels: int, + conditioning_channels: int = 3, + block_out_channels: Tuple[int] = (16, 32, 96, 256), + ): + super().__init__() + + self.conv_in = InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) + + self.blocks = nn.ModuleList([]) + + for i in range(len(block_out_channels) - 1): + channel_in = block_out_channels[i] + channel_out = block_out_channels[i + 1] + self.blocks.append(InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)) + self.blocks.append(InflatedConv3d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) + + self.conv_out = zero_module( + InflatedConv3d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) + ) + + def forward(self, conditioning): + embedding = self.conv_in(conditioning) + embedding = F.silu(embedding) + + for block in self.blocks: + embedding = block(embedding) + embedding = F.silu(embedding) + + embedding = self.conv_out(embedding) + + return embedding + + +class SparseControlNetModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels: int = 4, + conditioning_channels: int = 3, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: int = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: int = 1280, + attention_head_dim: Union[int, Tuple[int]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int]]] = None, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + projection_class_embeddings_input_dim: Optional[int] = None, + controlnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), + global_pool_conditions: bool = False, + + use_motion_module = True, + motion_module_resolutions = ( 1,2,4,8 ), + motion_module_mid_block = False, + motion_module_type = "Vanilla", + motion_module_kwargs = { + "num_attention_heads": 8, + "num_transformer_block": 1, + "attention_block_types": ["Temporal_Self"], + "temporal_position_encoding": True, + "temporal_position_encoding_max_len": 32, + "temporal_attention_dim_div": 1, + "causal_temporal_attention": False, + }, + + concate_conditioning_mask: bool = True, + use_simplified_condition_embedding: bool = False, + + set_noisy_sample_input_to_zero: bool = False, + ): + super().__init__() + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + # input + self.set_noisy_sample_input_to_zero = set_noisy_sample_input_to_zero + + conv_in_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = InflatedConv3d( + in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding + ) + + if concate_conditioning_mask: + conditioning_channels = conditioning_channels + 1 + self.concate_conditioning_mask = concate_conditioning_mask + + # control net conditioning embedding + if use_simplified_condition_embedding: + self.controlnet_cond_embedding = zero_module( + InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + ).to(torch.float16) + else: + self.controlnet_cond_embedding = SparseControlNetConditioningEmbedding( + conditioning_embedding_channels=block_out_channels[0], + block_out_channels=conditioning_embedding_out_channels, + conditioning_channels=conditioning_channels, + ).to(torch.float16) + self.use_simplified_condition_embedding = use_simplified_condition_embedding + + # time + time_embed_dim = block_out_channels[0] * 4 + + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + ) + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + + self.down_blocks = nn.ModuleList([]) + self.controlnet_down_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + # down + output_channel = block_out_channels[0] + + controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + + for i, down_block_type in enumerate(down_block_types): + res = 2 ** i + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block, + in_channels=input_channel, + out_channels=output_channel, + temb_channels=time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + downsample_padding=downsample_padding, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + + use_inflated_groupnorm=True, + + use_motion_module=use_motion_module and (res in motion_module_resolutions), + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + self.down_blocks.append(down_block) + + for _ in range(layers_per_block): + controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + + if not is_final_block: + controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + + # mid + mid_block_channel = block_out_channels[-1] + + controlnet_block = InflatedConv3d(mid_block_channel, mid_block_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_mid_block = controlnet_block + + self.mid_block = UNetMidBlock3DCrossAttn( + in_channels=mid_block_channel, + temb_channels=time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=num_attention_heads[-1], + resnet_groups=norm_num_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + + use_inflated_groupnorm=True, + use_motion_module=use_motion_module and motion_module_mid_block, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + + @classmethod + def from_unet( + cls, + unet: UNet2DConditionModel, + controlnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), + load_weights_from_unet: bool = True, + + controlnet_additional_kwargs: dict = {}, + ): + controlnet = cls( + in_channels=unet.config.in_channels, + flip_sin_to_cos=unet.config.flip_sin_to_cos, + freq_shift=unet.config.freq_shift, + down_block_types=unet.config.down_block_types, + only_cross_attention=unet.config.only_cross_attention, + block_out_channels=unet.config.block_out_channels, + layers_per_block=unet.config.layers_per_block, + downsample_padding=unet.config.downsample_padding, + mid_block_scale_factor=unet.config.mid_block_scale_factor, + act_fn=unet.config.act_fn, + norm_num_groups=unet.config.norm_num_groups, + norm_eps=unet.config.norm_eps, + cross_attention_dim=unet.config.cross_attention_dim, + attention_head_dim=unet.config.attention_head_dim, + num_attention_heads=unet.config.num_attention_heads, + use_linear_projection=unet.config.use_linear_projection, + class_embed_type=unet.config.class_embed_type, + num_class_embeds=unet.config.num_class_embeds, + upcast_attention=unet.config.upcast_attention, + resnet_time_scale_shift=unet.config.resnet_time_scale_shift, + projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, + controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, + conditioning_embedding_out_channels=conditioning_embedding_out_channels, + + **controlnet_additional_kwargs, + ) + + if load_weights_from_unet: + m, u = controlnet.conv_in.load_state_dict(cls.image_layer_filter(unet.conv_in.state_dict()), strict=False) + assert len(u) == 0 + m, u = controlnet.time_proj.load_state_dict(cls.image_layer_filter(unet.time_proj.state_dict()), strict=False) + assert len(u) == 0 + m, u = controlnet.time_embedding.load_state_dict(cls.image_layer_filter(unet.time_embedding.state_dict()), strict=False) + assert len(u) == 0 + + if controlnet.class_embedding: + m, u = controlnet.class_embedding.load_state_dict(cls.image_layer_filter(unet.class_embedding.state_dict()), strict=False) + assert len(u) == 0 + m, u = controlnet.down_blocks.load_state_dict(cls.image_layer_filter(unet.down_blocks.state_dict()), strict=False) + assert len(u) == 0 + m, u = controlnet.mid_block.load_state_dict(cls.image_layer_filter(unet.mid_block.state_dict()), strict=False) + assert len(u) == 0 + + return controlnet + + @staticmethod + def image_layer_filter(state_dict): + new_state_dict = {} + for name, param in state_dict.items(): + if "motion_modules." in name or "lora" in name: continue + new_state_dict[name] = param + return new_state_dict + + # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice + def set_attention_slice(self, slice_size): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + + controlnet_cond: torch.FloatTensor, + conditioning_mask: Optional[torch.FloatTensor] = None, + + conditioning_scale: float = 1.0, + class_labels: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guess_mode: bool = False, + return_dict: bool = True, + ) -> Union[SparseControlNetOutput, Tuple]: + + # set input noise to zero + # if self.set_noisy_sample_input_to_zero: + # sample = torch.zeros_like(sample).to(sample.device) + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + timesteps = timesteps.repeat(sample.shape[0] // timesteps.shape[0]) + encoder_hidden_states = encoder_hidden_states.repeat(sample.shape[0] // encoder_hidden_states.shape[0], 1, 1) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=self.dtype) + emb = self.time_embedding(t_emb) + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + + # 2. pre-process + # equal to set input noise to zero + if self.set_noisy_sample_input_to_zero: + shape = sample.shape + sample = self.conv_in.bias.reshape(1,-1,1,1,1).expand(shape[0],-1,shape[2],shape[3],shape[4]) + else: + sample = self.conv_in(sample) + + if self.concate_conditioning_mask: + controlnet_cond = torch.cat([controlnet_cond, conditioning_mask], dim=1).to(torch.float16) + # import pdb; pdb.set_trace() + controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) + + sample = sample + controlnet_cond + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + # cross_attention_kwargs=cross_attention_kwargs, + ) + else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) + + down_block_res_samples += res_samples + + # 4. mid + if self.mid_block is not None: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + # cross_attention_kwargs=cross_attention_kwargs, + ) + + # 5. controlnet blocks + controlnet_down_block_res_samples = () + + for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): + down_block_res_sample = controlnet_block(down_block_res_sample) + controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = controlnet_down_block_res_samples + + mid_block_res_sample = self.controlnet_mid_block(sample) + + # 6. scaling + if guess_mode and not self.config.global_pool_conditions: + scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0 + + scales = scales * conditioning_scale + down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] + mid_block_res_sample = mid_block_res_sample * scales[-1] # last one + else: + down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] + mid_block_res_sample = mid_block_res_sample * conditioning_scale + + if self.config.global_pool_conditions: + down_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples + ] + mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) + + if not return_dict: + return (down_block_res_samples, mid_block_res_sample) + + return SparseControlNetOutput( + down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample + ) + + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module diff --git a/motionclone/models/unet.py b/motionclone/models/unet.py new file mode 100644 index 0000000000000000000000000000000000000000..bd221a9652287e6868ef444566e06a49008c81eb --- /dev/null +++ b/motionclone/models/unet.py @@ -0,0 +1,515 @@ +# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py + +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import os +import json +import pdb + +import torch +import torch.nn as nn +import torch.utils.checkpoint + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.modeling_utils import ModelMixin +from diffusers.utils import BaseOutput, logging +from diffusers.models.embeddings import TimestepEmbedding, Timesteps +from .unet_blocks import ( + CrossAttnDownBlock3D, + CrossAttnUpBlock3D, + DownBlock3D, + UNetMidBlock3DCrossAttn, + UpBlock3D, + get_down_block, + get_up_block, +) +from .resnet import InflatedConv3d, InflatedGroupNorm + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class UNet3DConditionOutput(BaseOutput): + sample: torch.FloatTensor + + +class UNet3DConditionModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + sample_size: Optional[int] = None, + in_channels: int = 4, + out_channels: int = 4, + center_input_sample: bool = False, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + "DownBlock3D", + ), + mid_block_type: str = "UNetMidBlock3DCrossAttn", + up_block_types: Tuple[str] = ( # 第一个不带有CrossAttn,后面三个带有CrossAttn + "UpBlock3D", + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D" + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: int = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: int = 32, + norm_eps: float = 1e-5, + cross_attention_dim: int = 1280, + attention_head_dim: Union[int, Tuple[int]] = 8, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + + use_inflated_groupnorm=False, + + # Additional + use_motion_module = False, + motion_module_resolutions = ( 1,2,4,8 ), + motion_module_mid_block = False, + motion_module_decoder_only = False, + motion_module_type = None, + motion_module_kwargs = {}, + unet_use_cross_frame_attention = False, + unet_use_temporal_attention = False, + ): + super().__init__() + + self.sample_size = sample_size + time_embed_dim = block_out_channels[0] * 4 + + # input + self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) + + # time + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + else: + self.class_embedding = None + + self.down_blocks = nn.ModuleList([]) + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + res = 2 ** i + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block, + in_channels=input_channel, + out_channels=output_channel, + temb_channels=time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attention_head_dim[i], + downsample_padding=downsample_padding, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module and (res in motion_module_resolutions) and (not motion_module_decoder_only), + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + self.down_blocks.append(down_block) + + # mid + if mid_block_type == "UNetMidBlock3DCrossAttn": + self.mid_block = UNetMidBlock3DCrossAttn( + in_channels=block_out_channels[-1], + temb_channels=time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attention_head_dim[-1], + resnet_groups=norm_num_groups, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module and motion_module_mid_block, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + else: + raise ValueError(f"unknown mid_block_type : {mid_block_type}") + + # count how many layers upsample the videos + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_attention_head_dim = list(reversed(attention_head_dim)) + only_cross_attention = list(reversed(only_cross_attention)) + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + res = 2 ** (3 - i) + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=layers_per_block + 1, + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=reversed_attention_head_dim[i], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module and (res in motion_module_resolutions), + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + if use_inflated_groupnorm: + self.conv_norm_out = InflatedGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + else: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = nn.SiLU() + self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1) + + def set_attention_slice(self, slice_size): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module will split the input tensor in slices, to compute attention + in several steps. This is useful to save some memory in exchange for a small speed decrease. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If + `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_slicable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_slicable_dims(module) + + num_slicable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_slicable_layers * [1] + + slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + + # support controlnet + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + + return_dict: bool = True, + ) -> Union[UNet3DConditionOutput, Tuple]: + r""" + Args: + sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor + timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps + encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When + returning a tuple, the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2**self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): + logger.info("Forward upsample size to force interpolation output size.") + forward_upsample_size = True + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # time + timesteps = timestep + if not torch.is_tensor(timesteps): + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=self.dtype) + emb = self.time_embedding(t_emb) + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + + # pre-process + sample = self.conv_in(sample) + + # down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states) + + down_block_res_samples += res_samples + + # support controlnet + down_block_res_samples = list(down_block_res_samples) + if down_block_additional_residuals is not None: + for i, down_block_additional_residual in enumerate(down_block_additional_residuals): + if down_block_additional_residual.dim() == 4: # boardcast + down_block_additional_residual = down_block_additional_residual.unsqueeze(2) + down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual + + # mid + sample = self.mid_block( + sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask + ) + + # support controlnet + if mid_block_additional_residual is not None: + if mid_block_additional_residual.dim() == 4: # boardcast + mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2) + sample = sample + mid_block_additional_residual + + # up + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + upsample_size=upsample_size, + attention_mask=attention_mask, + ) + else: + sample = upsample_block( + hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states, + ) + + # post-process + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + if not return_dict: + return (sample,) + + return UNet3DConditionOutput(sample=sample) + + @classmethod + def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None): + if subfolder is not None: + pretrained_model_path = os.path.join(pretrained_model_path, subfolder) + print(f"loaded 3D unet's pretrained weights from {pretrained_model_path} ...") + + config_file = os.path.join(pretrained_model_path, 'config.json') + if not os.path.isfile(config_file): + raise RuntimeError(f"{config_file} does not exist") + with open(config_file, "r") as f: + config = json.load(f) + config["_class_name"] = cls.__name__ + config["down_block_types"] = [ + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + "CrossAttnDownBlock3D", + "DownBlock3D" + ] + config["up_block_types"] = [ + "UpBlock3D", + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D", + "CrossAttnUpBlock3D" + ] + + from diffusers.utils import WEIGHTS_NAME + model = cls.from_config(config, **unet_additional_kwargs) + model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) + if not os.path.isfile(model_file): + raise RuntimeError(f"{model_file} does not exist") + state_dict = torch.load(model_file, map_location="cpu") + + m, u = model.load_state_dict(state_dict, strict=False) + print(f"### motion keys will be loaded: {len(m)}; \n### unexpected keys: {len(u)};") + + params = [p.numel() if "motion_modules." in n else 0 for n, p in model.named_parameters()] + print(f"### Motion Module Parameters: {sum(params) / 1e6} M") + + return model diff --git a/motionclone/models/unet_blocks.py b/motionclone/models/unet_blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..0059b05cfd85002a9fff1e0d7dc92354724236d4 --- /dev/null +++ b/motionclone/models/unet_blocks.py @@ -0,0 +1,760 @@ +# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py + +import torch +from torch import nn + +from .attention import Transformer3DModel +from .resnet import Downsample3D, ResnetBlock3D, Upsample3D +from .motion_module import get_motion_module + +import pdb + +def get_down_block( + down_block_type, + num_layers, + in_channels, + out_channels, + temb_channels, + add_downsample, + resnet_eps, + resnet_act_fn, + attn_num_head_channels, + resnet_groups=None, + cross_attention_dim=None, + downsample_padding=None, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + resnet_time_scale_shift="default", + + unet_use_cross_frame_attention=False, + unet_use_temporal_attention=False, + use_inflated_groupnorm=False, + + use_motion_module=None, + + motion_module_type=None, + motion_module_kwargs=None, +): + down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type + if down_block_type == "DownBlock3D": + return DownBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + elif down_block_type == "CrossAttnDownBlock3D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") + return CrossAttnDownBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attn_num_head_channels, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + raise ValueError(f"{down_block_type} does not exist.") + + +def get_up_block( + up_block_type, + num_layers, + in_channels, + out_channels, + prev_output_channel, + temb_channels, + add_upsample, + resnet_eps, + resnet_act_fn, + attn_num_head_channels, + resnet_groups=None, + cross_attention_dim=None, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + resnet_time_scale_shift="default", + + unet_use_cross_frame_attention=False, + unet_use_temporal_attention=False, + use_inflated_groupnorm=False, + + use_motion_module=None, + motion_module_type=None, + motion_module_kwargs=None, +): + up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type + if up_block_type == "UpBlock3D": + return UpBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + elif up_block_type == "CrossAttnUpBlock3D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") + return CrossAttnUpBlock3D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + attn_num_head_channels=attn_num_head_channels, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + use_inflated_groupnorm=use_inflated_groupnorm, + + use_motion_module=use_motion_module, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) + raise ValueError(f"{up_block_type} does not exist.") + + +class UNetMidBlock3DCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + output_scale_factor=1.0, + cross_attention_dim=1280, + dual_cross_attention=False, + use_linear_projection=False, + upcast_attention=False, + + unet_use_cross_frame_attention=False, + unet_use_temporal_attention=False, + use_inflated_groupnorm=False, + + use_motion_module=None, + + motion_module_type=None, + motion_module_kwargs=None, + ): + super().__init__() + + self.has_cross_attention = True + self.attn_num_head_channels = attn_num_head_channels + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + + use_inflated_groupnorm=use_inflated_groupnorm, + ) + ] + attentions = [] + motion_modules = [] + + for _ in range(num_layers): + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + attn_num_head_channels, + in_channels // attn_num_head_channels, + in_channels=in_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + ) + ) + motion_modules.append( + get_motion_module( + in_channels=in_channels, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) if use_motion_module else None + ) + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + + use_inflated_groupnorm=use_inflated_groupnorm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class CrossAttnDownBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + cross_attention_dim=1280, + output_scale_factor=1.0, + downsample_padding=1, + add_downsample=True, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + + unet_use_cross_frame_attention=False, + unet_use_temporal_attention=False, + use_inflated_groupnorm=False, + + use_motion_module=None, + + motion_module_type=None, + motion_module_kwargs=None, + ): + super().__init__() + resnets = [] + attentions = [] + motion_modules = [] + + self.has_cross_attention = True + self.attn_num_head_channels = attn_num_head_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + + use_inflated_groupnorm=use_inflated_groupnorm, + ) + ) + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + attn_num_head_channels, + out_channels // attn_num_head_channels, + in_channels=out_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + ) + ) + motion_modules.append( + get_motion_module( + in_channels=out_channels, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) if use_motion_module else None + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample3D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): + output_states = () + + for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + )[0] + if motion_module is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) + + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + + # add motion module + hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class DownBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_downsample=True, + downsample_padding=1, + + use_inflated_groupnorm=False, + + use_motion_module=None, + motion_module_type=None, + motion_module_kwargs=None, + ): + super().__init__() + resnets = [] + motion_modules = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock3D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + + use_inflated_groupnorm=use_inflated_groupnorm, + ) + ) + motion_modules.append( + get_motion_module( + in_channels=out_channels, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) if use_motion_module else None + ) + + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample3D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, temb=None, encoder_hidden_states=None): + output_states = () + + for resnet, motion_module in zip(self.resnets, self.motion_modules): + if self.training and self.gradient_checkpointing: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + if motion_module is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) + else: + hidden_states = resnet(hidden_states, temb) + + # add motion module + hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class CrossAttnUpBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attn_num_head_channels=1, + cross_attention_dim=1280, + output_scale_factor=1.0, + add_upsample=True, + dual_cross_attention=False, + use_linear_projection=False, + only_cross_attention=False, + upcast_attention=False, + + unet_use_cross_frame_attention=False, + unet_use_temporal_attention=False, + use_inflated_groupnorm=False, + + use_motion_module=None, + + motion_module_type=None, + motion_module_kwargs=None, + ): + super().__init__() + resnets = [] + attentions = [] + motion_modules = [] + + self.has_cross_attention = True + self.attn_num_head_channels = attn_num_head_channels + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock3D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + + use_inflated_groupnorm=use_inflated_groupnorm, + ) + ) + if dual_cross_attention: + raise NotImplementedError + attentions.append( + Transformer3DModel( + attn_num_head_channels, + out_channels // attn_num_head_channels, + in_channels=out_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + + unet_use_cross_frame_attention=unet_use_cross_frame_attention, + unet_use_temporal_attention=unet_use_temporal_attention, + ) + ) + motion_modules.append( + get_motion_module( + in_channels=out_channels, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) if use_motion_module else None + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + res_hidden_states_tuple, + temb=None, + encoder_hidden_states=None, + upsample_size=None, + attention_mask=None, + ): + for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(attn, return_dict=False), + hidden_states, + encoder_hidden_states, + )[0] + if motion_module is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) + + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample + + # add motion module + hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states + + +class UpBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_upsample=True, + + use_inflated_groupnorm=False, + + use_motion_module=None, + motion_module_type=None, + motion_module_kwargs=None, + ): + super().__init__() + resnets = [] + motion_modules = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock3D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + + use_inflated_groupnorm=use_inflated_groupnorm, + ) + ) + motion_modules.append( + get_motion_module( + in_channels=out_channels, + motion_module_type=motion_module_type, + motion_module_kwargs=motion_module_kwargs, + ) if use_motion_module else None + ) + + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + + def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,): + for resnet, motion_module in zip(self.resnets, self.motion_modules): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + if motion_module is not None: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + return hidden_states diff --git a/motionclone/pipelines/__pycache__/pipeline_animation.cpython-310.pyc b/motionclone/pipelines/__pycache__/pipeline_animation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..266bfe9e106422bbda83fe8a4236670c962f2856 Binary files /dev/null and b/motionclone/pipelines/__pycache__/pipeline_animation.cpython-310.pyc differ diff --git a/motionclone/pipelines/__pycache__/pipeline_animation.cpython-38.pyc b/motionclone/pipelines/__pycache__/pipeline_animation.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2340e2d05fc6f584def4100fbc042ddb934a8320 Binary files /dev/null and b/motionclone/pipelines/__pycache__/pipeline_animation.cpython-38.pyc differ diff --git a/motionclone/pipelines/pipeline_animation.py b/motionclone/pipelines/pipeline_animation.py new file mode 100644 index 0000000000000000000000000000000000000000..1794e0dc0671c85303fbd5b67a6c4806d6e0f3ce --- /dev/null +++ b/motionclone/pipelines/pipeline_animation.py @@ -0,0 +1,497 @@ +# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py + +import inspect +from typing import Callable, List, Optional, Union, Any, Dict +from dataclasses import dataclass +from diffusers import StableDiffusionPipeline, DDIMInverseScheduler + +import os +import pickle +import numpy as np +import torch +from tqdm import tqdm +import omegaconf +from omegaconf import OmegaConf +import yaml +from diffusers.utils import is_accelerate_available +from packaging import version +from transformers import CLIPTextModel, CLIPTokenizer +from diffusers.configuration_utils import FrozenDict +from diffusers.models import AutoencoderKL +from diffusers.pipeline_utils import DiffusionPipeline +from diffusers.schedulers import ( + DDIMScheduler, + DPMSolverMultistepScheduler, + EulerAncestralDiscreteScheduler, + EulerDiscreteScheduler, + LMSDiscreteScheduler, + PNDMScheduler, +) +from diffusers.utils import deprecate, logging, BaseOutput +from einops import rearrange +from ..models.unet import UNet3DConditionModel +from ..models.sparse_controlnet import SparseControlNetModel +from ..utils.xformer_attention import * +from ..utils.conv_layer import * +from ..utils.util import * + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class AnimationPipelineOutput(BaseOutput): + videos: Union[torch.Tensor, np.ndarray] + + +class AnimationPipeline(DiffusionPipeline): + _optional_components = [] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet3DConditionModel, + scheduler: Union[ + DDIMScheduler, + PNDMScheduler, + LMSDiscreteScheduler, + EulerDiscreteScheduler, + EulerAncestralDiscreteScheduler, + DPMSolverMultistepScheduler, + ], + controlnet: Union[SparseControlNetModel, None] = None, + ): + super().__init__() + + if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: + deprecation_message = ( + f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" + f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " + "to update the config accordingly as leaving `steps_offset` might led to incorrect results" + " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," + " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" + " file" + ) + deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config["steps_offset"] = 1 + scheduler._internal_dict = FrozenDict(new_config) + + if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: + deprecation_message = ( + f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." + " `clip_sample` should be set to False in the configuration file. Please make sure to update the" + " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" + " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" + " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" + ) + deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config["clip_sample"] = False + scheduler._internal_dict = FrozenDict(new_config) + + is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( + version.parse(unet.config._diffusers_version).base_version + ) < version.parse("0.9.0.dev0") + is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = ( + "The configuration file of the unet has set the default `sample_size` to smaller than" + " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" + " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" + " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" + " in the config might lead to incorrect results in future versions. If you have downloaded this" + " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" + " the `unet/config.json` file" + ) + deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config["sample_size"] = 64 + unet._internal_dict = FrozenDict(new_config) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + scheduler=scheduler, + controlnet=controlnet, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + + + def enable_vae_slicing(self): + self.vae.enable_slicing() + + def disable_vae_slicing(self): + self.vae.disable_slicing() + + def enable_sequential_cpu_offload(self, gpu_id=0): + if is_accelerate_available(): + from accelerate import cpu_offload + else: + raise ImportError("Please install accelerate via `pip install accelerate`") + + device = torch.device(f"cuda:{gpu_id}") + + for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: + if cpu_offloaded_model is not None: + cpu_offload(cpu_offloaded_model, device) + + + + @property + def _execution_device(self): + if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): + return self.device + for module in self.unet.modules(): + if ( + hasattr(module, "_hf_hook") + and hasattr(module._hf_hook, "execution_device") + and module._hf_hook.execution_device is not None + ): + return torch.device(module._hf_hook.execution_device) + return self.device + + def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + text_embeddings = self.text_encoder( + text_input_ids.to(device), + attention_mask=attention_mask, + ) + text_embeddings = text_embeddings[0] + + # duplicate text embeddings for each generation per prompt, using mps friendly method + bs_embed, seq_len, _ = text_embeddings.shape + text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) + text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + uncond_embeddings = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + uncond_embeddings = uncond_embeddings[0] + + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = uncond_embeddings.shape[1] + uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) + uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) + + return text_embeddings + + @torch.no_grad() + def decode_latents(self, latents): + video_length = latents.shape[2] + latents = 1 / 0.18215 * latents + latents = rearrange(latents, "b c f h w -> (b f) c h w") + # video = self.vae.decode(latents).sample + video = [] + for frame_idx in tqdm(range(latents.shape[0])): + video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) + video = torch.cat(video) + video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) + video = (video / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 + video = video.cpu().float().numpy() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps): + if not isinstance(prompt, str) and not isinstance(prompt, list): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + if latents is None: + rand_device = "cpu" if device.type == "mps" else device + + if isinstance(generator, list): + shape = shape + # shape = (1,) + shape[1:] + latents = [ + torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) + for i in range(batch_size) + ] + latents = torch.cat(latents, dim=0).to(device) + else: + latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) + else: + if latents.shape != shape: + raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__( + self, + prompt: Union[str, List[str]], + video_length: Optional[int], + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_videos_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "tensor", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: Optional[int] = 1, + save_probs = False, + # support controlnet + controlnet_images: torch.FloatTensor = None, + controlnet_image_index: list = [0], + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + + **kwargs, + ): + + # to record temp attention probs + self.unet = prep_unet_attention(self.unet) + self.unet = prep_unet_conv(self.unet) + self.guidance_config = guidance_scale + + self.temp_rec = {} + + # Default height and width to unet + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + + # Check inputs. Raise error if not correct + self.check_inputs(prompt, height, width, callback_steps) + + # Define call parameters + # batch_size = 1 if isinstance(prompt, str) else len(prompt) + batch_size = 1 + if latents is not None: + batch_size = latents.shape[0] + if isinstance(prompt, list): + batch_size = len(prompt) + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # Encode input prompt + prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size + if negative_prompt is not None: + negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size + text_embeddings = self._encode_prompt( + prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt + ) + + # import pdb; pdb.set_trace() + # Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # Prepare latent variables + num_channels_latents = self.unet.in_channels + latents = self.prepare_latents( + batch_size * num_videos_per_prompt, + num_channels_latents, + video_length, + height, + width, + text_embeddings.dtype, + device, + generator, + latents, + ) + latents_dtype = latents.dtype + + # Prepare extra step kwargs. + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + down_block_additional_residuals = mid_block_additional_residual = None + # import pdb; pdb.set_trace() + if (getattr(self, "controlnet", None) != None) and (controlnet_images != None): + assert controlnet_images.dim() == 5 + + controlnet_noisy_latents = latent_model_input + controlnet_prompt_embeds = text_embeddings + + controlnet_images = controlnet_images.to(latents.device) + + controlnet_cond_shape = list(controlnet_images.shape) + controlnet_cond_shape[2] = video_length + controlnet_cond = torch.zeros(controlnet_cond_shape).to(latents.device) + + controlnet_conditioning_mask_shape = list(controlnet_cond.shape) + controlnet_conditioning_mask_shape[1] = 1 + controlnet_conditioning_mask = torch.zeros(controlnet_conditioning_mask_shape).to(latents.device) + + assert controlnet_images.shape[2] >= len(controlnet_image_index) + controlnet_cond[:,:,controlnet_image_index] = controlnet_images[:,:,:len(controlnet_image_index)] + controlnet_conditioning_mask[:,:,controlnet_image_index] = 1 + + down_block_additional_residuals, mid_block_additional_residual = self.controlnet( + controlnet_noisy_latents, t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=controlnet_cond, + conditioning_mask=controlnet_conditioning_mask, + conditioning_scale=controlnet_conditioning_scale, + guess_mode=False, return_dict=False, + ) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, t, + encoder_hidden_states=text_embeddings, + down_block_additional_residuals = down_block_additional_residuals, + mid_block_additional_residual = mid_block_additional_residual, + ).sample.to(dtype=latents_dtype) + + + # get temp attn probs + if save_probs: + temp_attn_prob = self.get_temp_attn_prob() + for key in temp_attn_prob.keys(): + temp_attn_prob[key] = temp_attn_prob[key].chunk(2, dim = 0)[0].detach().clone().cpu() + self.temp_rec[i] = temp_attn_prob + # import pdb; pdb.set_trace() + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # pickle temp attn prob + if save_probs: + with open('temp_dic.pkl', 'wb') as f: + pickle.dump(self.temp_rec, f) + + # Post-processing + video = self.decode_latents(latents) + + # Convert to tensor + if output_type == "tensor": + video = torch.from_numpy(video) + + if not return_dict: + return video + + return AnimationPipelineOutput(videos=video) diff --git a/motionclone/utils/__pycache__/conv_layer.cpython-38.pyc b/motionclone/utils/__pycache__/conv_layer.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c773518282b32c1c5522214df4d4fcb791bbed2 Binary files /dev/null and b/motionclone/utils/__pycache__/conv_layer.cpython-38.pyc differ diff --git a/motionclone/utils/__pycache__/convert_from_ckpt.cpython-38.pyc b/motionclone/utils/__pycache__/convert_from_ckpt.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..61596c277204bdb88dd0e96797e78b65f1611418 Binary files /dev/null and b/motionclone/utils/__pycache__/convert_from_ckpt.cpython-38.pyc differ diff --git a/motionclone/utils/__pycache__/convert_lora_safetensor_to_diffusers.cpython-38.pyc b/motionclone/utils/__pycache__/convert_lora_safetensor_to_diffusers.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..71b89ac40a947be5724989ae64ed147357881a6d Binary files /dev/null and b/motionclone/utils/__pycache__/convert_lora_safetensor_to_diffusers.cpython-38.pyc differ diff --git a/motionclone/utils/__pycache__/motionclone_functions.cpython-38.pyc b/motionclone/utils/__pycache__/motionclone_functions.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3cde10399714a705591c9b50ff9640e2eaedbeec Binary files /dev/null and b/motionclone/utils/__pycache__/motionclone_functions.cpython-38.pyc differ diff --git a/motionclone/utils/__pycache__/util.cpython-38.pyc b/motionclone/utils/__pycache__/util.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6bd26f6c04f624eccb6a5061832f83e40f277f5 Binary files /dev/null and b/motionclone/utils/__pycache__/util.cpython-38.pyc differ diff --git a/motionclone/utils/__pycache__/utils_freetraj.cpython-38.pyc b/motionclone/utils/__pycache__/utils_freetraj.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19689008732a2e31955e56010881d6f2603eb13e Binary files /dev/null and b/motionclone/utils/__pycache__/utils_freetraj.cpython-38.pyc differ diff --git a/motionclone/utils/__pycache__/xformer_attention.cpython-38.pyc b/motionclone/utils/__pycache__/xformer_attention.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f16d910a439a265030f4f0aa6b3fda4bc060fa02 Binary files /dev/null and b/motionclone/utils/__pycache__/xformer_attention.cpython-38.pyc differ diff --git a/motionclone/utils/conv_layer.py b/motionclone/utils/conv_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..f5c09c80b60adf5f1e312457da2f70b29c76d6da --- /dev/null +++ b/motionclone/utils/conv_layer.py @@ -0,0 +1,69 @@ +import torch + +def conv_forward(self): + def forward(input_tensor, temb, scale=1.0): + hidden_states = input_tensor + + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + # import pdb; pdb.set_trace() + if self.upsample is not None: + # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 + if hidden_states.shape[0] >= 64: + input_tensor = input_tensor.contiguous() + hidden_states = hidden_states.contiguous() + input_tensor = self.upsample(input_tensor) + hidden_states = self.upsample(hidden_states) + elif self.downsample is not None: + input_tensor = self.downsample(input_tensor) + hidden_states = self.downsample(hidden_states) + + hidden_states = self.conv1(hidden_states) + + if temb is not None: + temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None].repeat(1, 1, hidden_states.shape[2], 1, 1) + + if temb is not None and self.time_embedding_norm == "default": + hidden_states = hidden_states + temb + + hidden_states = self.norm2(hidden_states) + + if temb is not None and self.time_embedding_norm == "scale_shift": + scale, shift = torch.chunk(temb, 2, dim=1) + hidden_states = hidden_states * (1 + scale) + shift + + hidden_states = self.nonlinearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + + # record hidden state + self.record_hidden_state = hidden_states + + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + + output_tensor = (input_tensor + hidden_states) / self.output_scale_factor + + return output_tensor + + return forward + + +def get_conv_feat(unet): + hidden_state_dict = dict() + for i in range(len(unet.up_blocks)): + for j in range(len(unet.up_blocks[i].resnets)): + module = unet.up_blocks[i].resnets[j] + module_name = f"up_blocks.{i}.resnets.{j}" + # print(module_name) + hidden_state_dict[module_name] = module.record_hidden_state + return hidden_state_dict + + +def prep_unet_conv(unet): + for i in range(len(unet.up_blocks)): + for j in range(len(unet.up_blocks[i].resnets)): + module = unet.up_blocks[i].resnets[j] + module.forward = conv_forward(module) + return unet diff --git a/motionclone/utils/convert_from_ckpt.py b/motionclone/utils/convert_from_ckpt.py new file mode 100644 index 0000000000000000000000000000000000000000..a395d13e040c31f95835ae7cd224c806d7241197 --- /dev/null +++ b/motionclone/utils/convert_from_ckpt.py @@ -0,0 +1,968 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Conversion script for the Stable Diffusion checkpoints.""" + +import re +from io import BytesIO +from typing import Optional + +import requests +import torch +from transformers import ( + AutoFeatureExtractor, + BertTokenizerFast, + CLIPImageProcessor, + CLIPTextModel, + CLIPTextModelWithProjection, + CLIPTokenizer, + CLIPVisionConfig, + CLIPVisionModelWithProjection, +) + +from diffusers.models import ( + AutoencoderKL, + PriorTransformer, + UNet2DConditionModel, +) +from diffusers.schedulers import ( + DDIMScheduler, + DDPMScheduler, + DPMSolverMultistepScheduler, + EulerAncestralDiscreteScheduler, + EulerDiscreteScheduler, + HeunDiscreteScheduler, + LMSDiscreteScheduler, + PNDMScheduler, + UnCLIPScheduler, +) +from diffusers.utils.import_utils import BACKENDS_MAPPING + + +def shave_segments(path, n_shave_prefix_segments=1): + """ + Removes segments. Positive values shave the first segments, negative shave the last segments. + """ + if n_shave_prefix_segments >= 0: + return ".".join(path.split(".")[n_shave_prefix_segments:]) + else: + return ".".join(path.split(".")[:n_shave_prefix_segments]) + + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item.replace("in_layers.0", "norm1") + new_item = new_item.replace("in_layers.2", "conv1") + + new_item = new_item.replace("out_layers.0", "norm2") + new_item = new_item.replace("out_layers.3", "conv2") + + new_item = new_item.replace("emb_layers.1", "time_emb_proj") + new_item = new_item.replace("skip_connection", "conv_shortcut") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("nin_shortcut", "conv_shortcut") + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + # new_item = new_item.replace('norm.weight', 'group_norm.weight') + # new_item = new_item.replace('norm.bias', 'group_norm.bias') + + # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') + # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') + + # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("norm.weight", "group_norm.weight") + new_item = new_item.replace("norm.bias", "group_norm.bias") + + new_item = new_item.replace("q.weight", "query.weight") + new_item = new_item.replace("q.bias", "query.bias") + + new_item = new_item.replace("k.weight", "key.weight") + new_item = new_item.replace("k.bias", "key.bias") + + new_item = new_item.replace("v.weight", "value.weight") + new_item = new_item.replace("v.bias", "value.bias") + + new_item = new_item.replace("proj_out.weight", "proj_attn.weight") + new_item = new_item.replace("proj_out.bias", "proj_attn.bias") + + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def assign_to_checkpoint( + paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None +): + """ + This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits + attention layers, and takes into account additional replacements that may arise. + + Assigns the weights to the new checkpoint. + """ + assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." + + # Splits the attention layers into three variables. + if attention_paths_to_split is not None: + for path, path_map in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) + + num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 + + old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) + query, key, value = old_tensor.split(channels // num_heads, dim=1) + + checkpoint[path_map["query"]] = query.reshape(target_shape) + checkpoint[path_map["key"]] = key.reshape(target_shape) + checkpoint[path_map["value"]] = value.reshape(target_shape) + + for path in paths: + new_path = path["new"] + + # These have already been assigned + if attention_paths_to_split is not None and new_path in attention_paths_to_split: + continue + + # Global renaming happens here + new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") + new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") + new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") + + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement["old"], replacement["new"]) + + # proj_attn.weight has to be converted from conv 1D to linear + if "proj_attn.weight" in new_path: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] + else: + checkpoint[new_path] = old_checkpoint[path["old"]] + + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ["query.weight", "key.weight", "value.weight"] + for key in keys: + if ".".join(key.split(".")[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif "proj_attn.weight" in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + + +def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + if controlnet: + unet_params = original_config.model.params.control_stage_config.params + else: + unet_params = original_config.model.params.unet_config.params + + vae_params = original_config.model.params.first_stage_config.params.ddconfig + + block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] + + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" + up_block_types.append(block_type) + resolution //= 2 + + vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) + + head_dim = unet_params.num_heads if "num_heads" in unet_params else None + use_linear_projection = ( + unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False + ) + if use_linear_projection: + # stable diffusion 2-base-512 and 2-768 + if head_dim is None: + head_dim = [5, 10, 20, 20] + + class_embed_type = None + projection_class_embeddings_input_dim = None + + if "num_classes" in unet_params: + if unet_params.num_classes == "sequential": + class_embed_type = "projection" + assert "adm_in_channels" in unet_params + projection_class_embeddings_input_dim = unet_params.adm_in_channels + else: + raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}") + + config = { + "sample_size": image_size // vae_scale_factor, + "in_channels": unet_params.in_channels, + "down_block_types": tuple(down_block_types), + "block_out_channels": tuple(block_out_channels), + "layers_per_block": unet_params.num_res_blocks, + "cross_attention_dim": unet_params.context_dim, + "attention_head_dim": head_dim, + "use_linear_projection": use_linear_projection, + "class_embed_type": class_embed_type, + "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, + } + + if not controlnet: + config["out_channels"] = unet_params.out_channels + config["up_block_types"] = tuple(up_block_types) + + return config + + +def create_vae_diffusers_config(original_config, image_size: int): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + vae_params = original_config.model.params.first_stage_config.params.ddconfig + _ = original_config.model.params.first_stage_config.params.embed_dim + + block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] + down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) + up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) + + config = { + "sample_size": image_size, + "in_channels": vae_params.in_channels, + "out_channels": vae_params.out_ch, + "down_block_types": tuple(down_block_types), + "up_block_types": tuple(up_block_types), + "block_out_channels": tuple(block_out_channels), + "latent_channels": vae_params.z_channels, + "layers_per_block": vae_params.num_res_blocks, + } + return config + + +def create_diffusers_schedular(original_config): + schedular = DDIMScheduler( + num_train_timesteps=original_config.model.params.timesteps, + beta_start=original_config.model.params.linear_start, + beta_end=original_config.model.params.linear_end, + beta_schedule="scaled_linear", + ) + return schedular + + +def create_ldm_bert_config(original_config): + bert_params = original_config.model.parms.cond_stage_config.params + config = LDMBertConfig( + d_model=bert_params.n_embed, + encoder_layers=bert_params.n_layer, + encoder_ffn_dim=bert_params.n_embed * 4, + ) + return config + + +def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False): + """ + Takes a state dict and a config, and returns a converted checkpoint. + """ + + # extract state_dict for UNet + unet_state_dict = {} + keys = list(checkpoint.keys()) + + if controlnet: + unet_key = "control_model." + else: + unet_key = "model.diffusion_model." + + # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA + if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: + print(f"Checkpoint {path} has both EMA and non-EMA weights.") + print( + "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" + " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." + ) + for key in keys: + if key.startswith("model.diffusion_model"): + flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) + unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) + else: + if sum(k.startswith("model_ema") for k in keys) > 100: + print( + "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" + " weights (usually better for inference), please make sure to add the `--extract_ema` flag." + ) + + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) + + new_checkpoint = {} + + new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] + new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] + new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] + new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] + + if config["class_embed_type"] is None: + # No parameters to port + ... + elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": + new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] + new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] + new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] + new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] + else: + raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") + + new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] + new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] + + if not controlnet: + new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] + new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] + new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] + new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] + + # Retrieves the keys for the input blocks only + num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) + input_blocks = { + layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] + for layer_id in range(num_input_blocks) + } + + # Retrieves the keys for the middle blocks only + num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) + middle_blocks = { + layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] + for layer_id in range(num_middle_blocks) + } + + # Retrieves the keys for the output blocks only + num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) + output_blocks = { + layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] + for layer_id in range(num_output_blocks) + } + + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config["layers_per_block"] + 1) + layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) + + resnets = [ + key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key + ] + attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] + + if f"input_blocks.{i}.0.op.weight" in unet_state_dict: + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.weight" + ) + new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( + f"input_blocks.{i}.0.op.bias" + ) + + paths = renew_resnet_paths(resnets) + meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + + attentions_paths = renew_attention_paths(attentions) + meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + for i in range(num_output_blocks): + block_id = i // (config["layers_per_block"] + 1) + layer_in_block_id = i % (config["layers_per_block"] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + + for layer in output_block_layers: + layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] + attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] + + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + + meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + + output_block_list = {k: sorted(v) for k, v in output_block_list.items()} + if ["conv.bias", "conv.weight"] in output_block_list.values(): + index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.weight" + ] + new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ + f"output_blocks.{i}.{index}.conv.bias" + ] + + # Clear attentions as they have been attributed above. + if len(attentions) == 2: + attentions = [] + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"output_blocks.{i}.1", + "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config + ) + else: + resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) + for path in resnet_0_paths: + old_path = ".".join(["output_blocks", str(i), path["old"]]) + new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) + + new_checkpoint[new_path] = unet_state_dict[old_path] + + if controlnet: + # conditioning embedding + + orig_index = 0 + + new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.weight" + ) + new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.bias" + ) + + orig_index += 2 + + diffusers_index = 0 + + while diffusers_index < 6: + new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.weight" + ) + new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.bias" + ) + diffusers_index += 1 + orig_index += 2 + + new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.weight" + ) + new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.bias" + ) + + # down blocks + for i in range(num_input_blocks): + new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight") + new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias") + + # mid block + new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight") + new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias") + + return new_checkpoint + + +def convert_ldm_vae_checkpoint(checkpoint, config): + # extract state dict for VAE + vae_state_dict = {} + vae_key = "first_stage_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) + + new_checkpoint = {} + + new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] + new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] + new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] + new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] + new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] + new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] + + new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] + new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] + new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] + new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] + new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] + new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] + + new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] + new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] + new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] + new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] + + # Retrieves the keys for the encoder down blocks only + num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) + down_blocks = { + layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) + } + + # Retrieves the keys for the decoder up blocks only + num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) + up_blocks = { + layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) + } + + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] + + if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.weight" + ) + new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( + f"encoder.down.{i}.downsample.conv.bias" + ) + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [ + key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key + ] + + if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.weight" + ] + new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ + f"decoder.up.{block_id}.upsample.conv.bias" + ] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + + mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + + +def convert_ldm_bert_checkpoint(checkpoint, config): + def _copy_attn_layer(hf_attn_layer, pt_attn_layer): + hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight + hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight + hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight + + hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight + hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias + + def _copy_linear(hf_linear, pt_linear): + hf_linear.weight = pt_linear.weight + hf_linear.bias = pt_linear.bias + + def _copy_layer(hf_layer, pt_layer): + # copy layer norms + _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0]) + _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0]) + + # copy attn + _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1]) + + # copy MLP + pt_mlp = pt_layer[1][1] + _copy_linear(hf_layer.fc1, pt_mlp.net[0][0]) + _copy_linear(hf_layer.fc2, pt_mlp.net[2]) + + def _copy_layers(hf_layers, pt_layers): + for i, hf_layer in enumerate(hf_layers): + if i != 0: + i += i + pt_layer = pt_layers[i : i + 2] + _copy_layer(hf_layer, pt_layer) + + hf_model = LDMBertModel(config).eval() + + # copy embeds + hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight + hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight + + # copy layer norm + _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm) + + # copy hidden layers + _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers) + + _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits) + + return hf_model + + +def convert_ldm_clip_checkpoint_concise(checkpoint): + keys = list(checkpoint.keys()) + text_model_dict = {} + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] + + return text_model_dict + +def convert_ldm_clip_checkpoint(checkpoint): + text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") + keys = list(checkpoint.keys()) + + text_model_dict = {} + + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] + + text_model.load_state_dict(text_model_dict,strict=True) + + return text_model + + +textenc_conversion_lst = [ + ("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"), + ("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"), + ("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"), + ("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"), +] +textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst} + +textenc_transformer_conversion_lst = [ + # (stable-diffusion, HF Diffusers) + ("resblocks.", "text_model.encoder.layers."), + ("ln_1", "layer_norm1"), + ("ln_2", "layer_norm2"), + (".c_fc.", ".fc1."), + (".c_proj.", ".fc2."), + (".attn", ".self_attn"), + ("ln_final.", "transformer.text_model.final_layer_norm."), + ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), + ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), +] +protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst} +textenc_pattern = re.compile("|".join(protected.keys())) + + +def convert_paint_by_example_checkpoint(checkpoint): + config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14") + model = PaintByExampleImageEncoder(config) + + keys = list(checkpoint.keys()) + + text_model_dict = {} + + for key in keys: + if key.startswith("cond_stage_model.transformer"): + text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] + + # load clip vision + model.model.load_state_dict(text_model_dict) + + # load mapper + keys_mapper = { + k[len("cond_stage_model.mapper.res") :]: v + for k, v in checkpoint.items() + if k.startswith("cond_stage_model.mapper") + } + + MAPPING = { + "attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"], + "attn.c_proj": ["attn1.to_out.0"], + "ln_1": ["norm1"], + "ln_2": ["norm3"], + "mlp.c_fc": ["ff.net.0.proj"], + "mlp.c_proj": ["ff.net.2"], + } + + mapped_weights = {} + for key, value in keys_mapper.items(): + prefix = key[: len("blocks.i")] + suffix = key.split(prefix)[-1].split(".")[-1] + name = key.split(prefix)[-1].split(suffix)[0][1:-1] + mapped_names = MAPPING[name] + + num_splits = len(mapped_names) + for i, mapped_name in enumerate(mapped_names): + new_name = ".".join([prefix, mapped_name, suffix]) + shape = value.shape[0] // num_splits + mapped_weights[new_name] = value[i * shape : (i + 1) * shape] + + model.mapper.load_state_dict(mapped_weights) + + # load final layer norm + model.final_layer_norm.load_state_dict( + { + "bias": checkpoint["cond_stage_model.final_ln.bias"], + "weight": checkpoint["cond_stage_model.final_ln.weight"], + } + ) + + # load final proj + model.proj_out.load_state_dict( + { + "bias": checkpoint["proj_out.bias"], + "weight": checkpoint["proj_out.weight"], + } + ) + + # load uncond vector + model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"]) + return model + + +def convert_open_clip_checkpoint(checkpoint): + text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder") + + keys = list(checkpoint.keys()) + + text_model_dict = {} + + if "cond_stage_model.model.text_projection" in checkpoint: + d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0]) + else: + d_model = 1024 + + text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids") + + for key in keys: + if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer + continue + if key in textenc_conversion_map: + text_model_dict[textenc_conversion_map[key]] = checkpoint[key] + if key.startswith("cond_stage_model.model.transformer."): + new_key = key[len("cond_stage_model.model.transformer.") :] + if new_key.endswith(".in_proj_weight"): + new_key = new_key[: -len(".in_proj_weight")] + new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) + text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] + text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] + text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] + elif new_key.endswith(".in_proj_bias"): + new_key = new_key[: -len(".in_proj_bias")] + new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) + text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] + text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] + text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] + else: + new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) + + text_model_dict[new_key] = checkpoint[key] + + text_model.load_state_dict(text_model_dict) + + return text_model + + +def stable_unclip_image_encoder(original_config): + """ + Returns the image processor and clip image encoder for the img2img unclip pipeline. + + We currently know of two types of stable unclip models which separately use the clip and the openclip image + encoders. + """ + + image_embedder_config = original_config.model.params.embedder_config + + sd_clip_image_embedder_class = image_embedder_config.target + sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1] + + if sd_clip_image_embedder_class == "ClipImageEmbedder": + clip_model_name = image_embedder_config.params.model + + if clip_model_name == "ViT-L/14": + feature_extractor = CLIPImageProcessor() + image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") + else: + raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}") + + elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder": + feature_extractor = CLIPImageProcessor() + image_encoder = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") + else: + raise NotImplementedError( + f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}" + ) + + return feature_extractor, image_encoder + + +def stable_unclip_image_noising_components( + original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None +): + """ + Returns the noising components for the img2img and txt2img unclip pipelines. + + Converts the stability noise augmentor into + 1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats + 2. a `DDPMScheduler` for holding the noise schedule + + If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided. + """ + noise_aug_config = original_config.model.params.noise_aug_config + noise_aug_class = noise_aug_config.target + noise_aug_class = noise_aug_class.split(".")[-1] + + if noise_aug_class == "CLIPEmbeddingNoiseAugmentation": + noise_aug_config = noise_aug_config.params + embedding_dim = noise_aug_config.timestep_dim + max_noise_level = noise_aug_config.noise_schedule_config.timesteps + beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule + + image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim) + image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule) + + if "clip_stats_path" in noise_aug_config: + if clip_stats_path is None: + raise ValueError("This stable unclip config requires a `clip_stats_path`") + + clip_mean, clip_std = torch.load(clip_stats_path, map_location=device) + clip_mean = clip_mean[None, :] + clip_std = clip_std[None, :] + + clip_stats_state_dict = { + "mean": clip_mean, + "std": clip_std, + } + + image_normalizer.load_state_dict(clip_stats_state_dict) + else: + raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}") + + return image_normalizer, image_noising_scheduler + + +def convert_controlnet_checkpoint( + checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema +): + ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) + ctrlnet_config["upcast_attention"] = upcast_attention + + ctrlnet_config.pop("sample_size") + + controlnet_model = ControlNetModel(**ctrlnet_config) + + converted_ctrl_checkpoint = convert_ldm_unet_checkpoint( + checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True + ) + + controlnet_model.load_state_dict(converted_ctrl_checkpoint) + + return controlnet_model diff --git a/motionclone/utils/convert_lora_safetensor_to_diffusers.py b/motionclone/utils/convert_lora_safetensor_to_diffusers.py new file mode 100644 index 0000000000000000000000000000000000000000..549336a62011dfa23d74452d64f5b9eec8a6b81b --- /dev/null +++ b/motionclone/utils/convert_lora_safetensor_to_diffusers.py @@ -0,0 +1,152 @@ +# coding=utf-8 +# Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Changes were made to this source code by Yuwei Guo. +""" Conversion script for the LoRA's safetensors checkpoints. """ + +import argparse + +import torch +from safetensors.torch import load_file + +from diffusers import StableDiffusionPipeline + + +def load_diffusers_lora(pipeline, state_dict, alpha=1.0): + # directly update weight in diffusers model + for key in state_dict: + # only process lora down key + if "up." in key: continue + + up_key = key.replace(".down.", ".up.") + model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "") + model_key = model_key.replace("to_out.", "to_out.0.") + layer_infos = model_key.split(".")[:-1] + + curr_layer = pipeline.unet + while len(layer_infos) > 0: + temp_name = layer_infos.pop(0) + curr_layer = curr_layer.__getattr__(temp_name) + + weight_down = state_dict[key] + weight_up = state_dict[up_key] + curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) + + return pipeline + + +def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6): + # load base model + # pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32) + + # load LoRA weight from .safetensors + # state_dict = load_file(checkpoint_path) + + visited = [] + + # directly update weight in diffusers model + for key in state_dict: + # it is suggested to print out the key, it usually will be something like below + # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" + + # as we have set the alpha beforehand, so just skip + if ".alpha" in key or key in visited: + continue + + if "text" in key: + layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") + curr_layer = pipeline.text_encoder + else: + layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") + curr_layer = pipeline.unet + + # find the target layer + temp_name = layer_infos.pop(0) + while len(layer_infos) > -1: + try: + curr_layer = curr_layer.__getattr__(temp_name) + if len(layer_infos) > 0: + temp_name = layer_infos.pop(0) + elif len(layer_infos) == 0: + break + except Exception: + if len(temp_name) > 0: + temp_name += "_" + layer_infos.pop(0) + else: + temp_name = layer_infos.pop(0) + + pair_keys = [] + if "lora_down" in key: + pair_keys.append(key.replace("lora_down", "lora_up")) + pair_keys.append(key) + else: + pair_keys.append(key) + pair_keys.append(key.replace("lora_up", "lora_down")) + + # update weight + if len(state_dict[pair_keys[0]].shape) == 4: + weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) + weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) + curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device) + else: + weight_up = state_dict[pair_keys[0]].to(torch.float32) + weight_down = state_dict[pair_keys[1]].to(torch.float32) + curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) + + # update visited list + for item in pair_keys: + visited.append(item) + + return pipeline + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." + ) + parser.add_argument( + "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." + ) + parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") + parser.add_argument( + "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" + ) + parser.add_argument( + "--lora_prefix_text_encoder", + default="lora_te", + type=str, + help="The prefix of text encoder weight in safetensors", + ) + parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") + parser.add_argument( + "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." + ) + parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") + + args = parser.parse_args() + + base_model_path = args.base_model_path + checkpoint_path = args.checkpoint_path + dump_path = args.dump_path + lora_prefix_unet = args.lora_prefix_unet + lora_prefix_text_encoder = args.lora_prefix_text_encoder + alpha = args.alpha + + pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) + + pipe = pipe.to(args.device) + pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) diff --git a/motionclone/utils/motionclone_functions.py b/motionclone/utils/motionclone_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..6e4db94942542de077c80c767a33d3df6c529128 --- /dev/null +++ b/motionclone/utils/motionclone_functions.py @@ -0,0 +1,663 @@ +from dataclasses import dataclass +import os +import numpy as np +import torch +import matplotlib.pyplot as plt +import matplotlib.colors as mcolors +from typing import Callable, List, Optional, Union +from diffusers.utils import deprecate, logging, BaseOutput +from .xformer_attention import * +from .conv_layer import * +from .util import * +from diffusers.utils.torch_utils import randn_tensor +from typing import List, Optional, Tuple, Union +logger = logging.get_logger(__name__) # pylint: disable=invalid-name +from motionclone.utils.util import video_preprocess +import einops +import torchvision.transforms as transforms + +def add_noise(self, timestep, x_0, noise_pred): + alpha_prod_t = self.scheduler.alphas_cumprod[timestep] + beta_prod_t = 1 - alpha_prod_t + latents_noise = alpha_prod_t ** 0.5 * x_0 + beta_prod_t ** 0.5 * noise_pred + return latents_noise + +@torch.no_grad() +def obtain_motion_representation(self, generator=None, motion_representation_path: str = None, + duration=None,use_controlnet=False,): + + video_data = video_preprocess(self.input_config.video_path, self.input_config.height, + self.input_config.width, self.input_config.video_length,duration=duration) + video_latents = self.vae.encode(video_data.to(self.vae.dtype).to(self.vae.device)).latent_dist.mode() + video_latents = self.vae.config.scaling_factor * video_latents + video_latents = video_latents.unsqueeze(0) + video_latents = einops.rearrange(video_latents, "b f c h w -> b c f h w") + + uncond_input = self.tokenizer( + [""], padding="max_length", max_length=self.tokenizer.model_max_length, + return_tensors="pt" + ) + step_t = int(self.input_config.add_noise_step) + uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] + noise_sampled = randn_tensor(video_latents.shape, generator=generator, device=video_latents.device, dtype=video_latents.dtype) + noisy_latents = self.add_noise(step_t, video_latents, noise_sampled) + + down_block_additional_residuals = mid_block_additional_residual = None + if use_controlnet: + controlnet_image_index = self.input_config.image_index + if self.controlnet.use_simplified_condition_embedding: + controlnet_images = video_latents[:,:,controlnet_image_index,:,:] + else: + controlnet_images = (einops.rearrange(video_data.unsqueeze(0).to(self.vae.dtype).to(self.vae.device), "b f c h w -> b c f h w")+1)/2 + controlnet_images = controlnet_images[:,:,controlnet_image_index,:,:] + + controlnet_cond_shape = list(controlnet_images.shape) + controlnet_cond_shape[2] = noisy_latents.shape[2] + controlnet_cond = torch.zeros(controlnet_cond_shape).to(noisy_latents.device).to(noisy_latents.dtype) + + controlnet_conditioning_mask_shape = list(controlnet_cond.shape) + controlnet_conditioning_mask_shape[1] = 1 + controlnet_conditioning_mask = torch.zeros(controlnet_conditioning_mask_shape).to(noisy_latents.device).to(noisy_latents.dtype) + + controlnet_cond[:,:,controlnet_image_index] = controlnet_images + controlnet_conditioning_mask[:,:,controlnet_image_index] = 1 + + down_block_additional_residuals, mid_block_additional_residual = self.controlnet( + noisy_latents, step_t, + encoder_hidden_states=uncond_embeddings, + controlnet_cond=controlnet_cond, + conditioning_mask=controlnet_conditioning_mask, + conditioning_scale=self.input_config.controlnet_scale, + guess_mode=False, return_dict=False, + ) + + _ = self.unet(noisy_latents, step_t, encoder_hidden_states=uncond_embeddings, return_dict=False, only_motion_feature=True, + down_block_additional_residuals = down_block_additional_residuals, + mid_block_additional_residual = mid_block_additional_residual,) + temp_attn_prob_control = self.get_temp_attn_prob() + + motion_representation = { key: [max_value, max_index.to(torch.uint8)] for key, tensor in temp_attn_prob_control.items() for max_value, max_index in [torch.topk(tensor, k=1, dim=-1)]} + + torch.save(motion_representation, motion_representation_path) + self.motion_representation_path = motion_representation_path + + +def compute_temp_loss(self, temp_attn_prob_control_dict): + temp_attn_prob_loss = [] + for name in temp_attn_prob_control_dict.keys(): + current_temp_attn_prob = temp_attn_prob_control_dict[name] + reference_representation_dict = self.motion_representation_dict[name] + + max_index = reference_representation_dict[1].to(torch.int64).to(current_temp_attn_prob.device) + current_motion_representation = torch.gather(current_temp_attn_prob, index = max_index, dim=-1) + + reference_motion_representation = reference_representation_dict[0].to(dtype = current_motion_representation.dtype, device = current_motion_representation.device) + + module_attn_loss = F.mse_loss(current_motion_representation, reference_motion_representation.detach()) + temp_attn_prob_loss.append(module_attn_loss) + + loss_temp = torch.stack(temp_attn_prob_loss) + return loss_temp.sum() + +def sample_video( + self, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + noisy_latents: Optional[torch.FloatTensor] = None, + add_controlnet: bool = False, +): + # Determine if use controlnet, i.e., conditional image2video + self.add_controlnet = add_controlnet + if self.add_controlnet: + image_transforms = transforms.Compose([ + transforms.Resize((self.input_config.height, self.input_config.width)), + transforms.ToTensor(), + ]) + + controlnet_images = [image_transforms(Image.open(path).convert("RGB")) for path in self.input_config.condition_image_path_list] + controlnet_images = torch.stack(controlnet_images).unsqueeze(0).to(dtype=self.vae.dtype,device=self.vae.device) + controlnet_images = rearrange(controlnet_images, "b f c h w -> b c f h w") + + with torch.no_grad(): + if self.controlnet.use_simplified_condition_embedding: + num_controlnet_images = controlnet_images.shape[2] + controlnet_images = rearrange(controlnet_images, "b c f h w -> (b f) c h w") + controlnet_images = self.vae.encode(controlnet_images * 2. - 1.).latent_dist.sample() * self.vae.config.scaling_factor + self.controlnet_images = rearrange(controlnet_images, "(b f) c h w -> b c f h w", f=num_controlnet_images) + else: + self.controlnet_images = controlnet_images + + + # Define call parameters + # perform classifier_free_guidance in default + batch_size = 1 + do_classifier_free_guidance = True + device = self._execution_device + + # Encode input prompt + self.text_embeddings = self._encode_prompt(self.input_config.new_prompt, device, 1, do_classifier_free_guidance, self.input_config.negative_prompt) + # [uncond_embeddings, text_embeddings] [2, 77, 768] + + # Prepare latent variables + noisy_latents = self.prepare_latents( + batch_size, + self.unet.config.in_channels, + self.input_config.video_length, + self.input_config.height, + self.input_config.width, + self.text_embeddings.dtype, + device, + generator, + noisy_latents, + ) + + self.motion_representation_dict = torch.load(self.motion_representation_path) + self.motion_scale = self.input_config.motion_guidance_weight + + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # save GPU memory + # self.vae.to(device = "cpu") + # self.text_encoder.to(device = "cpu") + # torch.cuda.empty_cache() + + with self.progress_bar(total=self.input_config.inference_steps) as progress_bar: + for step_index, step_t in enumerate(self.scheduler.timesteps): + noisy_latents = self.single_step_video(noisy_latents, step_index, step_t, extra_step_kwargs) + progress_bar.update() + + # decode latents for videos + video = self.decode_latents(noisy_latents) + return video + +def single_step_video(self, noisy_latents, step_index, step_t, extra_step_kwargs): + + down_block_additional_residuals = mid_block_additional_residual = None + if self.add_controlnet: + with torch.no_grad(): + controlnet_cond_shape = list(self.controlnet_images.shape) + controlnet_cond_shape[2] = noisy_latents.shape[2] + controlnet_cond = torch.zeros(controlnet_cond_shape).to(noisy_latents.device).to(noisy_latents.dtype) + + controlnet_conditioning_mask_shape = list(controlnet_cond.shape) + controlnet_conditioning_mask_shape[1] = 1 + controlnet_conditioning_mask = torch.zeros(controlnet_conditioning_mask_shape).to(noisy_latents.device).to(noisy_latents.dtype) + + controlnet_image_index = self.input_config.image_index + controlnet_cond[:,:,controlnet_image_index] = self.controlnet_images + controlnet_conditioning_mask[:,:,controlnet_image_index] = 1 + + down_block_additional_residuals, mid_block_additional_residual = self.controlnet( + noisy_latents.expand(2,-1,-1,-1,-1), step_t, + encoder_hidden_states=self.text_embeddings, + controlnet_cond=controlnet_cond, + conditioning_mask=controlnet_conditioning_mask, + conditioning_scale=self.input_config.controlnet_scale, + guess_mode=False, return_dict=False, + ) + + # Only require grad when need to compute the gradient for guidance + if step_index < self.input_config.guidance_steps: + + down_block_additional_residuals_uncond = down_block_additional_residuals_cond = None + mid_block_additional_residual_uncond = mid_block_additional_residual_cond = None + if self.add_controlnet: + down_block_additional_residuals_uncond = [tensor[[0],...].detach() for tensor in down_block_additional_residuals] + down_block_additional_residuals_cond = [tensor[[1],...].detach() for tensor in down_block_additional_residuals] + mid_block_additional_residual_uncond = mid_block_additional_residual[[0],...].detach() + mid_block_additional_residual_cond = mid_block_additional_residual[[1],...].detach() + + control_latents = noisy_latents.clone().detach() + control_latents.requires_grad = True + + control_latents = self.scheduler.scale_model_input(control_latents, step_t) + noisy_latents = self.scheduler.scale_model_input(noisy_latents, step_t) + + with torch.no_grad(): + noise_pred_uncondition = self.unet(noisy_latents, step_t, encoder_hidden_states=self.text_embeddings[[0]], + down_block_additional_residuals = down_block_additional_residuals_uncond, + mid_block_additional_residual = mid_block_additional_residual_uncond,).sample.to(dtype=noisy_latents.dtype) + + noise_pred_condition = self.unet(control_latents, step_t, encoder_hidden_states=self.text_embeddings[[1]], + down_block_additional_residuals = down_block_additional_residuals_cond, + mid_block_additional_residual = mid_block_additional_residual_cond,).sample.to(dtype=noisy_latents.dtype) + temp_attn_prob_control = self.get_temp_attn_prob() + + loss_motion = self.motion_scale * self.compute_temp_loss(temp_attn_prob_control,) + + if step_index < self.input_config.warm_up_steps: + scale = (step_index+1)/self.input_config.warm_up_steps + loss_motion = scale*loss_motion + + if step_index > self.input_config.guidance_steps-self.input_config.cool_up_steps: + scale = (self.input_config.guidance_steps-step_index)/self.input_config.cool_up_steps + loss_motion = scale*loss_motion + + gradient = torch.autograd.grad(loss_motion, control_latents, allow_unused=True)[0] # [1, 4, 16, 64, 64], + assert gradient is not None, f"Step {step_index}: grad is None" + + noise_pred = noise_pred_condition + self.input_config.cfg_scale * (noise_pred_condition - noise_pred_uncondition) + + control_latents = self.scheduler.customized_step(noise_pred, step_index, control_latents, score=gradient.detach(), + **extra_step_kwargs, return_dict=False)[0] # [1, 4, 16, 64, 64] + return control_latents.detach() + + else: + with torch.no_grad(): + noisy_latents = self.scheduler.scale_model_input(noisy_latents, step_t) + noise_pred_group = self.unet( + noisy_latents.expand(2,-1,-1,-1,-1), step_t, + encoder_hidden_states=self.text_embeddings, + down_block_additional_residuals = down_block_additional_residuals, + mid_block_additional_residual = mid_block_additional_residual, + ).sample.to(dtype=noisy_latents.dtype) + + noise_pred = noise_pred_group[[1]] + self.input_config.cfg_scale * (noise_pred_group[[1]] - noise_pred_group[[0]]) + noisy_latents = self.scheduler.customized_step(noise_pred, step_index, noisy_latents, score=None, **extra_step_kwargs, return_dict=False)[0] # [1, 4, 16, 64, 64] + return noisy_latents.detach() + + +def get_temp_attn_prob(self,index_select=None): + + attn_prob_dic = {} + + for name, module in self.unet.named_modules(): + module_name = type(module).__name__ + if "VersatileAttention" in module_name and classify_blocks(self.input_config.motion_guidance_blocks, name): + key = module.processor.key + if index_select is not None: + get_index = torch.repeat_interleave(torch.tensor(index_select), repeats=key.shape[0]//len(index_select)) + index_all = torch.arange(key.shape[0]) + index_picked = index_all[get_index.bool()] + key = key[index_picked] + key = module.reshape_heads_to_batch_dim(key).contiguous() + + query = module.processor.query + if index_select is not None: + query = query[index_picked] + query = module.reshape_heads_to_batch_dim(query).contiguous() + attention_probs = module.get_attention_scores(query, key, None) + attention_probs = attention_probs.reshape(-1, module.heads,attention_probs.shape[1], attention_probs.shape[2]) + attn_prob_dic[name] = attention_probs + + return attn_prob_dic + +@torch.no_grad() +def schedule_customized_step( + self, + model_output: torch.FloatTensor, + step_index: int, + sample: torch.FloatTensor, + eta: float = 0.0, + use_clipped_model_output: bool = False, + generator=None, + variance_noise: Optional[torch.FloatTensor] = None, + return_dict: bool = True, + + # Guidance parameters + score=None, + guidance_scale=1.0, + indices=None, # [0] + return_middle = False, +): + if self.num_inference_steps is None: + raise ValueError( + "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" + ) + + # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf + # Ideally, read DDIM paper in-detail understanding + + # Notation ( -> + # - pred_noise_t -> e_theta(x_t, t) + # - pred_original_sample -> f_theta(x_t, t) or x_0 + # - std_dev_t -> sigma_t + # - eta -> η + # - pred_sample_direction -> "direction pointing to x_t" + # - pred_prev_sample -> "x_t-1" + + + # Support IF models + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: + model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) + else: + predicted_variance = None + + timestep = self.timesteps[step_index] + # 1. get previous step value (=t-1) + # prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + prev_timestep = self.timesteps[step_index+1] if step_index +1 = 0 else self.final_alpha_cumprod + + beta_prod_t = 1 - alpha_prod_t + + # 3. compute predicted original sample from predicted noise also called + # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + if self.config.prediction_type == "epsilon": + pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) + pred_epsilon = model_output + elif self.config.prediction_type == "sample": + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) + elif self.config.prediction_type == "v_prediction": + pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output + pred_epsilon = (alpha_prod_t ** 0.5) * model_output + (beta_prod_t ** 0.5) * sample + else: + raise ValueError( + f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" + " `v_prediction`" + ) + + # 4. Clip or threshold "predicted x_0" + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp( + -self.config.clip_sample_range, self.config.clip_sample_range + ) + + # 5. compute variance: "sigma_t(η)" -> see formula (16) + # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) + variance = self._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** (0.5) + + if use_clipped_model_output: + # the pred_epsilon is always re-derived from the clipped x_0 in Glide + pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) # [2, 4, 64, 64] + + if score is not None and return_middle: + return pred_epsilon, alpha_prod_t, alpha_prod_t_prev, pred_original_sample + + # 6. apply guidance following the formula (14) from https://arxiv.org/pdf/2105.05233.pdf + if score is not None and guidance_scale > 0.0: + if indices is not None: + # import pdb; pdb.set_trace() + assert pred_epsilon[indices].shape == score.shape, "pred_epsilon[indices].shape != score.shape" + pred_epsilon[indices] = pred_epsilon[indices] - guidance_scale * (1 - alpha_prod_t) ** (0.5) * score + else: + assert pred_epsilon.shape == score.shape + pred_epsilon = pred_epsilon - guidance_scale * (1 - alpha_prod_t) ** (0.5) * score + # + + # 7. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * pred_epsilon + + # 8. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction + + if eta > 0: + if variance_noise is not None and generator is not None: + raise ValueError( + "Cannot pass both generator and variance_noise. Please make sure that either `generator` or" + " `variance_noise` stays `None`." + ) + + if variance_noise is None: + variance_noise = randn_tensor( + model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype + ) + variance = std_dev_t * variance_noise + + prev_sample = prev_sample + variance + + if not return_dict: + return (prev_sample,) + + return prev_sample, pred_original_sample, alpha_prod_t_prev + + + +def schedule_set_timesteps(self, num_inference_steps: int, guidance_steps: int = 0, guiduance_scale: float = 0.0, device: Union[str, torch.device] = None,timestep_spacing_type= "uneven"): + """ + Sets the discrete timesteps used for the diffusion chain (to be run before inference). + + Args: + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. + """ + + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError( + f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" + f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" + f" maximal {self.config.num_train_timesteps} timesteps." + ) + + self.num_inference_steps = num_inference_steps + + # assign more steps in early denoising stage for motion guidance + if timestep_spacing_type == "uneven": + timesteps_guidance = ( + np.linspace(int((1-guiduance_scale)*self.config.num_train_timesteps), self.config.num_train_timesteps - 1, guidance_steps) + .round()[::-1] + .copy() + .astype(np.int64) + ) + timesteps_vanilla = ( + np.linspace(0, int((1-guiduance_scale)*self.config.num_train_timesteps) - 1, num_inference_steps-guidance_steps) + .round()[::-1] + .copy() + .astype(np.int64) + ) + timesteps = np.concatenate((timesteps_guidance, timesteps_vanilla)) + + # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 + elif timestep_spacing_type == "linspace": + timesteps = ( + np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) + .round()[::-1] + .copy() + .astype(np.int64) + ) + elif timestep_spacing_type == "leading": + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + # creates integer timesteps by multiplying by ratio + # casting to int to avoid issues when num_inference_step is power of 3 + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif timestep_spacing_type == "trailing": + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + # creates integer timesteps by multiplying by ratio + # casting to int to avoid issues when num_inference_step is power of 3 + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError( + f"{timestep_spacing_type} is not supported. Please make sure to choose one of 'leading' or 'trailing'." + ) + + self.timesteps = torch.from_numpy(timesteps).to(device) + +@dataclass +class UNet3DConditionOutput(BaseOutput): + sample: torch.FloatTensor + +def unet_customized_forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + + # support controlnet + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + + return_dict: bool = True, + only_motion_feature: bool = False, + ) -> Union[UNet3DConditionOutput, Tuple]: + r""" + Args: + sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor + timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps + encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When + returning a tuple, the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2**self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): + logger.info("Forward upsample size to force interpolation output size.") + forward_upsample_size = True + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # time + timesteps = timestep + if not torch.is_tensor(timesteps): + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=self.dtype) + emb = self.time_embedding(t_emb) + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + + # pre-process + sample = self.conv_in(sample) + + # down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states) + + down_block_res_samples += res_samples + + # support controlnet + down_block_res_samples = list(down_block_res_samples) + if down_block_additional_residuals is not None: + for i, down_block_additional_residual in enumerate(down_block_additional_residuals): + if down_block_additional_residual.dim() == 4: # boardcast + down_block_additional_residual = down_block_additional_residual.unsqueeze(2) + down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual + + # mid + sample = self.mid_block( + sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask + ) + + # support controlnet + if mid_block_additional_residual is not None: + if mid_block_additional_residual.dim() == 4: # boardcast + mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2) + sample = sample + mid_block_additional_residual + + # up + for i, upsample_block in enumerate(self.up_blocks): + if i<= int(self.input_config.motion_guidance_blocks[-1].split(".")[-1]): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + upsample_size=upsample_size, + attention_mask=attention_mask, + ) + else: + sample = upsample_block( + hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states, + ) + else: + if only_motion_feature: + return 0 + with torch.no_grad(): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + upsample_size=upsample_size, + attention_mask=attention_mask, + ) + else: + sample = upsample_block( + hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states, + ) + + # post-process + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + if not return_dict: + return (sample,) + + return UNet3DConditionOutput(sample=sample) + diff --git a/motionclone/utils/util.py b/motionclone/utils/util.py new file mode 100644 index 0000000000000000000000000000000000000000..5375b74065a2ea1bb7a9861d42e4f4403a79b526 --- /dev/null +++ b/motionclone/utils/util.py @@ -0,0 +1,448 @@ +import hashlib +import io +import re +import os +import imageio +import numpy as np +from typing import Union + +import cv2 +import numpy as np +import requests +import random +import torch +import PIL.Image +import PIL.ImageOps +from PIL import Image +from typing import Callable, Union + +import torch +import torchvision +import torch.distributed as dist +import torch.nn.functional as F +import decord +decord.bridge.set_bridge('torch') +from PIL import Image, ImageOps + +from safetensors import safe_open +# from tqdm import tqdm +from einops import rearrange +from motionclone.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint,convert_ldm_clip_checkpoint_concise +from motionclone.utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora +from huggingface_hub import snapshot_download +# from transformers import ( +# AutoFeatureExtractor, +# BertTokenizerFast, +# CLIPImageProcessor, +# CLIPTextConfig, +# CLIPTextModel, +# CLIPTextModelWithProjection, +# CLIPTokenizer, +# CLIPVisionConfig, +# CLIPVisionModelWithProjection, +# ) + +MOTION_MODULES = [ + "mm_sd_v14.ckpt", + "mm_sd_v15.ckpt", + "mm_sd_v15_v2.ckpt", + "v3_sd15_mm.ckpt", +] + +ADAPTERS = [ + # "mm_sd_v14.ckpt", + # "mm_sd_v15.ckpt", + # "mm_sd_v15_v2.ckpt", + # "mm_sdxl_v10_beta.ckpt", + "v2_lora_PanLeft.ckpt", + "v2_lora_PanRight.ckpt", + "v2_lora_RollingAnticlockwise.ckpt", + "v2_lora_RollingClockwise.ckpt", + "v2_lora_TiltDown.ckpt", + "v2_lora_TiltUp.ckpt", + "v2_lora_ZoomIn.ckpt", + "v2_lora_ZoomOut.ckpt", + "v3_sd15_adapter.ckpt", + # "v3_sd15_mm.ckpt", + "v3_sd15_sparsectrl_rgb.ckpt", + "v3_sd15_sparsectrl_scribble.ckpt", +] + +BACKUP_DREAMBOOTH_MODELS = [ + "realisticVisionV60B1_v51VAE.safetensors", + "majicmixRealistic_v4.safetensors", + "leosamsFilmgirlUltra_velvia20Lora.safetensors", + "toonyou_beta3.safetensors", + "majicmixRealistic_v5Preview.safetensors", + "rcnzCartoon3d_v10.safetensors", + "lyriel_v16.safetensors", + "leosamsHelloworldXL_filmGrain20.safetensors", + "TUSUN.safetensors", +] + +def zero_rank_print(s): + if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s) + + +def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): + videos = rearrange(videos, "b c t h w -> t b c h w") + outputs = [] + for x in videos: + x = torchvision.utils.make_grid(x, nrow=n_rows) + x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) + if rescale: + x = (x + 1.0) / 2.0 # -1,1 -> 0,1 + x = (x * 255).numpy().astype(np.uint8) + outputs.append(x) + + os.makedirs(os.path.dirname(path), exist_ok=True) + imageio.mimsave(path, outputs, fps=fps) + +def auto_download(local_path, is_dreambooth_lora=False): + hf_repo = "guoyww/animatediff_t2i_backups" if is_dreambooth_lora else "guoyww/animatediff" + folder, filename = os.path.split(local_path) + + if not os.path.exists(local_path): + print(f"local file {local_path} does not exist. trying to download from {hf_repo}") + + if is_dreambooth_lora: assert filename in BACKUP_DREAMBOOTH_MODELS, f"{filename} dose not exist in {hf_repo}" + else: assert filename in MOTION_MODULES + ADAPTERS, f"{filename} dose not exist in {hf_repo}" + + folder = "." if folder == "" else folder + os.makedirs(folder, exist_ok=True) + snapshot_download(repo_id=hf_repo, local_dir=folder, allow_patterns=[filename]) + +def load_weights( + animation_pipeline, + # motion module + motion_module_path = "", + motion_module_lora_configs = [], + # domain adapter + adapter_lora_path = "", + adapter_lora_scale = 1.0, + # image layers + dreambooth_model_path = "", + lora_model_path = "", + lora_alpha = 0.8, +): + # motion module + unet_state_dict = {} + if motion_module_path != "": + print(f"load motion module from {motion_module_path}") + motion_module_state_dict = torch.load(motion_module_path, map_location="cpu") + motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict + unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name}) + unet_state_dict.pop("animatediff_config", "") + + missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False) + # assert len(unexpected) == 0 + del unet_state_dict + + # base model + if dreambooth_model_path != "": + print(f"load dreambooth model from {dreambooth_model_path}") + if dreambooth_model_path.endswith(".safetensors"): + # import pdb; pdb.set_trace() + dreambooth_state_dict = {} + # import safetensors + # dreambooth_state_dict = safetensors.torch.load_file(dreambooth_model_path) + # import pdb; pdb.set_trace() + with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f: + for key in f.keys(): + dreambooth_state_dict[key] = f.get_tensor(key) + # import pdb; pdb.set_trace() + elif dreambooth_model_path.endswith(".ckpt"): + dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu") + + # 1. vae + converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config) + animation_pipeline.vae.load_state_dict(converted_vae_checkpoint) + # 2. unet + converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config) + animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False) + + # 3. text_model + # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) + converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_concise(dreambooth_state_dict) + animation_pipeline.text_encoder.load_state_dict(converted_text_encoder_checkpoint, strict=True) + del dreambooth_state_dict, converted_vae_checkpoint, converted_unet_checkpoint, converted_text_encoder_checkpoint + + # clip_config_name = "models/clip-vit-large-patch14" + # clip_config = CLIPTextConfig.from_pretrained(clip_config_name, local_files_only=True) + # text_model = CLIPTextModel(clip_config) + # keys = list(dreambooth_state_dict.keys()) + # text_model_dict = {} + # for key in keys: + # if key.startswith("cond_stage_model.transformer"): + # text_model_dict[key[len("cond_stage_model.transformer.") :]] = dreambooth_state_dict[key] + # text_model.load_state_dict(text_model_dict) + # animation_pipeline.text_encoder = text_model.to(dtype=animation_pipeline.unet.dtype) + # # import pdb; pdb.set_trace() + # # animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) + # del dreambooth_state_dict + + # lora layers + if lora_model_path != "": + print(f"load lora model from {lora_model_path}") + assert lora_model_path.endswith(".safetensors") + lora_state_dict = {} + with safe_open(lora_model_path, framework="pt", device="cpu") as f: + for key in f.keys(): + lora_state_dict[key] = f.get_tensor(key) + + animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha) + del lora_state_dict + + # domain adapter lora + if adapter_lora_path != "": + print(f"load domain lora from {adapter_lora_path}") + domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu") + domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict + domain_lora_state_dict.pop("animatediff_config", "") + + animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale) + + # motion module lora + for motion_module_lora_config in motion_module_lora_configs: + path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"] + print(f"load motion LoRA from {path}") + motion_lora_state_dict = torch.load(path, map_location="cpu") + motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict + motion_lora_state_dict.pop("animatediff_config", "") + + animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha) + + return animation_pipeline + +def video_preprocess(video_path, height, width, video_length, duration=None, sample_start_idx=0,): + + video_name = video_path.split('/')[-1].split('.')[0] + vr = decord.VideoReader(video_path) + fps = vr.get_avg_fps() + if duration is None: + # 读取整个视频 + total_frames = len(vr) + else: + # 根据给定的时长(秒)计算帧数 + total_frames = int(fps * duration) + total_frames = min(total_frames, len(vr)) # 确保不超过视频总长度 + + sample_index = np.linspace(0, total_frames - 1, video_length, dtype=int) + print(total_frames,sample_index) + video = vr.get_batch(sample_index) + video = rearrange(video, "f h w c -> f c h w") + + video = F.interpolate(video, size=(height, width), mode="bilinear", align_corners=True) + + # video_sample = rearrange(video, "(b f) c h w -> b f h w c", f=video_length) + # imageio.mimwrite(f"processed_videos/sample_{video_name}.mp4", video_sample[0], fps=8, quality=9) + + video = video / 127.5 - 1.0 + + return video + + +def set_nested_item(dataDict, mapList, value): + """Set item in nested dictionary""" + """ + Example: the mapList contains the name of each key ['injection','self-attn'] + this method will change the content in dataDict['injection']['self-attn'] with value + + """ + for k in mapList[:-1]: + dataDict = dataDict[k] + dataDict[mapList[-1]] = value + + +def merge_sweep_config(base_config, update): + """Merge the updated parameters into the base config""" + + if base_config is None: + raise ValueError("Base config is None") + if update is None: + raise ValueError("Update config is None") + for key in update.keys(): + map_list = key.split("--") + set_nested_item(base_config, map_list, update[key]) + return base_config + + +# Adapt from https://github.com/castorini/daam +def compute_token_merge_indices(tokenizer, prompt: str, word: str, word_idx: int = None, offset_idx: int = 0): + merge_idxs = [] + tokens = tokenizer.tokenize(prompt.lower()) + if word_idx is None: + word = word.lower() + search_tokens = tokenizer.tokenize(word) + start_indices = [x + offset_idx for x in range(len(tokens)) if + tokens[x:x + len(search_tokens)] == search_tokens] + for indice in start_indices: + merge_idxs += [i + indice for i in range(0, len(search_tokens))] + if not merge_idxs: + raise Exception(f'Search word {word} not found in prompt!') + else: + merge_idxs.append(word_idx) + + return [x + 1 for x in merge_idxs], word_idx # Offset by 1. + + +def extract_data(input_string: str) -> list: + print("input_string:", input_string) + """ + Extract data from a string pattern where contents in () are separated by ; + The first item in each () is considered as 'ref' and the rest as 'gen'. + + Args: + - input_string (str): The input string pattern. + + Returns: + - list: A list of dictionaries containing 'ref' and 'gen'. + """ + pattern = r'\(([^)]+)\)' + matches = re.findall(pattern, input_string) + + data = [] + for match in matches: + parts = [x.strip() for x in match.split(';')] + ref = parts[0].strip() + gen = parts[1].strip() + data.append({'ref': ref, 'gen': gen}) + + return data + + +def generate_hash_key(image, prompt=""): + """ + Generate a hash key for the given image and prompt. + """ + byte_array = io.BytesIO() + image.save(byte_array, format='JPEG') + + # Get byte data + image_byte_data = byte_array.getvalue() + + # Combine image byte data and prompt byte data + combined_data = image_byte_data + prompt.encode('utf-8') + + sha256 = hashlib.sha256() + sha256.update(combined_data) + return sha256.hexdigest() + + +def save_data(data, folder_path, key): + """ + Save data to a file, using key as the file name + """ + + if not os.path.exists(folder_path): + os.makedirs(folder_path) + file_path = os.path.join(folder_path, f"{key}.pt") + + torch.save(data, file_path) + + +def get_data(folder_path, key): + """ + Get data from a file, using key as the file name + :param folder_path: + :param key: + :return: + """ + + file_path = os.path.join(folder_path, f"{key}.pt") + if os.path.exists(file_path): + return torch.load(file_path) + else: + return None + + +def PILtoTensor(data: Image.Image) -> torch.Tensor: + return torch.tensor(np.array(data)).permute(2, 0, 1).unsqueeze(0).float() + + +def TensorToPIL(data: torch.Tensor) -> Image.Image: + return Image.fromarray(data.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)) + +# Adapt from https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/utils/loading_utils.py#L9 +def load_image( + image: Union[str, PIL.Image.Image], convert_method: Callable[[PIL.Image.Image], PIL.Image.Image] = None +) -> PIL.Image.Image: + """ + Loads `image` to a PIL Image. + + Args: + image (`str` or `PIL.Image.Image`): + The image to convert to the PIL Image format. + convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], optional): + A conversion method to apply to the image after loading it. + When set to `None` the image will be converted "RGB". + + Returns: + `PIL.Image.Image`: + A PIL Image. + """ + if isinstance(image, str): + if image.startswith("http://") or image.startswith("https://"): + image = PIL.Image.open(requests.get(image, stream=True).raw) + elif os.path.isfile(image): + image = PIL.Image.open(image) + else: + raise ValueError( + f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {image} is not a valid path." + ) + elif isinstance(image, PIL.Image.Image): + image = image + else: + raise ValueError( + "Incorrect format used for the image. Should be a URL linking to an image, a local path, or a PIL image." + ) + + image = PIL.ImageOps.exif_transpose(image) + + if convert_method is not None: + image = convert_method(image) + else: + image = image.convert("RGB") + + return image + +# Take from huggingface/diffusers +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def _in_step(config, step): + in_step = False + try: + start_step = config.start_step + end_step = config.end_step + if start_step <= step < end_step: + in_step = True + except: + in_step = False + return in_step + +def classify_blocks(block_list, name): + is_correct_block = False + for block in block_list: + if block in name: + is_correct_block = True + break + return is_correct_block + +def set_all_seed(seed): + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + np.random.seed(seed) + random.seed(seed) + torch.backends.cudnn.deterministic = True \ No newline at end of file diff --git a/motionclone/utils/xformer_attention.py b/motionclone/utils/xformer_attention.py new file mode 100644 index 0000000000000000000000000000000000000000..468a3d8d13e0711c190a89fc8c7c6d02d7330bf5 --- /dev/null +++ b/motionclone/utils/xformer_attention.py @@ -0,0 +1,98 @@ +import math +from typing import Optional, Callable +import xformers +from omegaconf import OmegaConf +import yaml +from .util import classify_blocks + +def identify_blocks(block_list, name): + block_name = None + for block in block_list: + if block in name: + block_name = block + break + return block_name + + +class MySelfAttnProcessor: + def __init__(self, attention_op: Optional[Callable] = None): + self.attention_op = attention_op + + + def __call__(self, attn, hidden_states, query, key, value, attention_mask): + # self.attn = attn + self.key = key + self.query = query + # self.value = value + # self.attention_mask = attention_mask + # self.hidden_state = hidden_states.detach() + # return hidden_states + + def record_qkv(self, attn, hidden_states, query, key, value, attention_mask): + # self.attn = attn + self.key = key + self.query = query + # self.value = value + # # self.attention_mask = attention_mask + # self.hidden_state = hidden_states.detach() + # # import pdb; pdb.set_trace() + + def record_attn_mask(self, attn, hidden_states, query, key, value, attention_mask): + self.attn = attn + self.attention_mask = attention_mask + + +def prep_unet_attention(unet,motion_gudiance_blocks): + # replace the fwd function + for name, module in unet.named_modules(): + module_name = type(module).__name__ + if "VersatileAttention" in module_name and classify_blocks(motion_gudiance_blocks, name): # the temporary attention in guidance blocks + module.set_processor(MySelfAttnProcessor()) + # print(module_name) + return unet + + +def get_self_attn_feat(unet, injection_config, config): + hidden_state_dict = dict() + query_dict = dict() + key_dict = dict() + value_dict = dict() + + for name, module in unet.named_modules(): + module_name = type(module).__name__ + if "CrossAttention" in module_name and 'attn1' in name and classify_blocks(injection_config.blocks, name=name): + res = int(math.sqrt(module.processor.hidden_state.shape[1])) + # import pdb; pdb.set_trace() + bs = module.processor.hidden_state.shape[0] # 20 * 16 = 320 + # block_name = identify_blocks(injection_config.blocks, name=name) + # block_id = int(block_name.split('.')[-1]) + # h = config.H // (32 * block_id) + # w = config.W // (32 * block_id) + hidden_state_dict[name] = module.processor.hidden_state.cpu().permute(0, 2, 1).reshape(bs, -1, res, res) + res = int(math.sqrt(module.processor.query.shape[1])) + query_dict[name] = module.processor.query.cpu().permute(0, 2, 1).reshape(bs, -1, res, res) + key_dict[name] = module.processor.key.cpu().permute(0, 2, 1).reshape(bs, -1, res, res) + value_dict[name] = module.processor.value.cpu().permute(0, 2, 1).reshape(bs, -1, res, res) + # import pdb; pdb.set_trace() + # import pdb; pdb.set_trace() + return hidden_state_dict, query_dict, key_dict, value_dict + + +def clean_attn_buffer(unet): + for name, module in unet.named_modules(): + module_name = type(module).__name__ + if module_name == "Attention" and 'attn' in name: + if 'injection_config' in module.processor.__dict__.keys(): + module.processor.injection_config = None + if 'injection_mask' in module.processor.__dict__.keys(): + module.processor.injection_mask = None + if 'obj_index' in module.processor.__dict__.keys(): + module.processor.obj_index = None + if 'pca_weight' in module.processor.__dict__.keys(): + module.processor.pca_weight = None + if 'pca_weight_changed' in module.processor.__dict__.keys(): + module.processor.pca_weight_changed = None + if 'pca_info' in module.processor.__dict__.keys(): + module.processor.pca_info = None + if 'step' in module.processor.__dict__.keys(): + module.processor.step = None diff --git a/reference_videos/camera_1.mp4 b/reference_videos/camera_1.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..06a8c2008dce9fb6db2550cbfaf96bc401bd1623 --- /dev/null +++ b/reference_videos/camera_1.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62321a2a8bc671b03f912e363d66010a0bbcf6d98d31d9f30ac1cb7d06099a8d +size 400650 diff --git a/reference_videos/camera_pan_down.mp4 b/reference_videos/camera_pan_down.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..42ea580bc58386ae7ba7bc7313658d217fdca262 --- /dev/null +++ b/reference_videos/camera_pan_down.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af5b5fd84728f844fe7ce766e7920e08eaef0944da3462f2e17e954c067e2a57 +size 535648 diff --git a/reference_videos/camera_pan_up.mp4 b/reference_videos/camera_pan_up.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..7d57faf25d99312d9c3c859fd7f976ee20e0c5c2 --- /dev/null +++ b/reference_videos/camera_pan_up.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f66af10dd2d110bba3c6047acf477d22b40904949a9098fb753133de7d80dbc4 +size 879335 diff --git a/reference_videos/camera_translation_1.mp4 b/reference_videos/camera_translation_1.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..7800188b46b8faa6c9ff4149ed0abb6b6e23e581 --- /dev/null +++ b/reference_videos/camera_translation_1.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1151181afa8d0560cb6a2be99c17fd657f6f9364fa10837713f48ab7cada1c3 +size 514540 diff --git a/reference_videos/camera_translation_2.mp4 b/reference_videos/camera_translation_2.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..835ad7c38bbe0c2564d773e3ab56c11aac752e3f --- /dev/null +++ b/reference_videos/camera_translation_2.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c0af642d5cc70ab35876e8fe7c5da112c4782163e12b9fc7b5ec33222863ee0e +size 684655 diff --git a/reference_videos/camera_zoom_in.mp4 b/reference_videos/camera_zoom_in.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..776081d8d45e77e39d3954447cc24c92d932f7d7 --- /dev/null +++ b/reference_videos/camera_zoom_in.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a9bdb57576a801c4c049a59a20f9fc8b14eaa57beac50eddfa53c56076b64925 +size 1197273 diff --git a/reference_videos/camera_zoom_out.mp4 b/reference_videos/camera_zoom_out.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..7582032f2dd40d97ef944f41e8d072ff488d42b3 --- /dev/null +++ b/reference_videos/camera_zoom_out.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b73e3471737528167cecad1d31a323da1a32708a115cb3fe0938bd42581f9070 +size 984866 diff --git a/reference_videos/sample_astronaut.mp4 b/reference_videos/sample_astronaut.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..6d0f49e7030fdecf2e6b6d719bf646a257497e50 --- /dev/null +++ b/reference_videos/sample_astronaut.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:70c22ce81987b9c7825af37a22588771ed03c6839bdf7446eec7417202d01916 +size 1456676 diff --git a/reference_videos/sample_blackswan.mp4 b/reference_videos/sample_blackswan.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..22b8d1fb1344d302a12c80989f474f3c7bb776a2 --- /dev/null +++ b/reference_videos/sample_blackswan.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:13f05772a2cbed4e800820d22b0afffdfc053446116a3b700a686e7f63bf3662 +size 1351812 diff --git a/reference_videos/sample_cat.mp4 b/reference_videos/sample_cat.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..41070c99a32ef3c0f8fe40e38d4f0947f6ddfcb0 --- /dev/null +++ b/reference_videos/sample_cat.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af2ee3a217c85bbffbf2a8e8bc8e93aad93fc69bbad7d7bb98928f6f3641d546 +size 1681425 diff --git a/reference_videos/sample_cow.mp4 b/reference_videos/sample_cow.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..a1801e31064d4fe46dbc261ca81cf3ca3296e839 --- /dev/null +++ b/reference_videos/sample_cow.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:06db236f3fd3e07c82a49a3f1750558c0ee036c221d41af3baa164604e8723d2 +size 2255955 diff --git a/reference_videos/sample_fox.mp4 b/reference_videos/sample_fox.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..023999513583282722f5b5b8724096edb9ce2ed9 --- /dev/null +++ b/reference_videos/sample_fox.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6ac422cdc91ef385361890e0f1267b917b76760c1f650e13586119e4092fa57d +size 1276068 diff --git a/reference_videos/sample_leaves.mp4 b/reference_videos/sample_leaves.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..82b2343b2f3cfdebacc8b2cc364dd3c063d4d386 --- /dev/null +++ b/reference_videos/sample_leaves.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dac5de1d0b77eabf6c3b7cb5a858b59a6577f563065f5daf5fffdaa7ab12ca50 +size 665431 diff --git a/reference_videos/sample_white_tiger.mp4 b/reference_videos/sample_white_tiger.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..cae8a746b7176182677cc0307e064bcb6c0f52e0 --- /dev/null +++ b/reference_videos/sample_white_tiger.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1844a46e5d460b56074a20797908fe7ca71e2c51401c299449661cdc4530b698 +size 1969611 diff --git a/reference_videos/sample_wolf.mp4 b/reference_videos/sample_wolf.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..8d38b428f9dd2355eb304b4044250bf0d14ad555 --- /dev/null +++ b/reference_videos/sample_wolf.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be57ba1048e9fab45a6aced93564445ae4a74c83a71888a96ca3507a7f919b9a +size 1894025 diff --git a/requirements.txt b/requirements.txt index 685328eaef16eb8201b7d9c844dc821451babe02..3616de23867c42b623437a8f73d4f80bc1cbd7b4 100644 --- a/requirements.txt +++ b/requirements.txt @@ -30,4 +30,4 @@ gradio huggingface_hub==0.25.0 httpx[socks] matplotlib -numpy<2 \ No newline at end of file +numpy<2 diff --git a/t2v_video_app.py b/t2v_video_app.py new file mode 100644 index 0000000000000000000000000000000000000000..3844783a95f0076f40d1a175cda0c4d11a126b89 --- /dev/null +++ b/t2v_video_app.py @@ -0,0 +1,251 @@ +import gradio as gr +from omegaconf import OmegaConf +import torch +from diffusers import AutoencoderKL, DDIMScheduler +from transformers import CLIPTextModel, CLIPTokenizer +from motionclone.models.unet import UNet3DConditionModel +from motionclone.pipelines.pipeline_animation import AnimationPipeline +from motionclone.utils.util import load_weights +from diffusers.utils.import_utils import is_xformers_available +from motionclone.utils.motionclone_functions import * +import json +from motionclone.utils.xformer_attention import * +import os +import numpy as np +import imageio +import shutil +import subprocess + +# 权重下载函数 +def download_weights(): + try: + # 创建模型目录 + os.makedirs("models", exist_ok=True) + os.makedirs("models/DreamBooth_LoRA", exist_ok=True) + os.makedirs("models/Motion_Module", exist_ok=True) + os.makedirs("models/SparseCtrl", exist_ok=True) + + # 下载 Stable Diffusion 模型 + if not os.path.exists("models/StableDiffusion"): + subprocess.run(["git", "clone", "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5", "models/StableDiffusion"]) + + # 下载 DreamBooth LoRA 模型 + if not os.path.exists("models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"): + subprocess.run(["wget", "https://huggingface.co/svjack/Realistic-Vision-V6.0-B1/resolve/main/realisticVisionV60B1_v51VAE.safetensors", "-O", "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"]) + + # 下载 Motion Module 模型 + if not os.path.exists("models/Motion_Module/v3_sd15_mm.ckpt"): + subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_mm.ckpt", "-O", "models/Motion_Module/v3_sd15_mm.ckpt"]) + if not os.path.exists("models/Motion_Module/v3_sd15_adapter.ckpt"): + subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_adapter.ckpt", "-O", "models/Motion_Module/v3_sd15_adapter.ckpt"]) + + # 下载 SparseCtrl 模型 + if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"): + subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_rgb.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"]) + if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"): + subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_scribble.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"]) + + print("Weights downloaded successfully.") + except Exception as e: + print(f"Error downloading weights: {e}") + +# 下载权重 +download_weights() + +# 加载 model_config +model_config_path = "configs/model_config/model_config.yaml" +model_config = OmegaConf.load(model_config_path) + +# 硬编码的配置值 +config = { + "motion_module": "models/Motion_Module/v3_sd15_mm.ckpt", + "dreambooth_path": "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors", + "model_config": model_config, + "W": 512, + "H": 512, + "L": 16 +} + +# 写死 pretrained_model_path +pretrained_model_path = "models/StableDiffusion" + +# 模型初始化逻辑 +def initialize_models(): + # 设置设备 + adopted_dtype = torch.float16 + device = "cuda" + set_all_seed(42) + + # 加载模型组件 + tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") + text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype) + vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype) + + # 更新配置 + config["width"] = config.get("W", 512) + config["height"] = config.get("H", 512) + config["video_length"] = config.get("L", 16) + + # 加载模型配置 + unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=config["model_config"]["unet_additional_kwargs"]).to(device).to(dtype=adopted_dtype) + + # 启用 xformers + if is_xformers_available(): + unet.enable_xformers_memory_efficient_attention() + + # 创建 pipeline + pipeline = AnimationPipeline( + vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, + controlnet=None, + scheduler=DDIMScheduler(**config["model_config"]["noise_scheduler_kwargs"]), + ).to(device) + + # 加载权重 + pipeline = load_weights( + pipeline, + motion_module_path=config["motion_module"], + dreambooth_model_path=config["dreambooth_path"], + ).to(device) + pipeline.text_encoder.to(dtype=adopted_dtype) + + # 加载自定义函数 + pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler) + pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler) + pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet) + pipeline.sample_video = sample_video.__get__(pipeline) + pipeline.single_step_video = single_step_video.__get__(pipeline) + pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline) + pipeline.add_noise = add_noise.__get__(pipeline) + pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline) + pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline) + + # 冻结 UNet 参数 + for param in pipeline.unet.parameters(): + param.requires_grad = False + pipeline.input_config, pipeline.unet.input_config = config, config + + # 准备 UNet 的 attention 和 conv + pipeline.unet = prep_unet_attention(pipeline.unet, config["motion_guidance_blocks"]) + pipeline.unet = prep_unet_conv(pipeline.unet) + pipeline.scheduler.customized_set_timesteps(config["inference_steps"], config["guidance_steps"], config["guidance_scale"], device=device, timestep_spacing_type="uneven") + + return pipeline + +# 初始化模型 +pipeline = initialize_models() + +def generate_video(uploaded_video, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, default_seed, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step, new_prompt, seed): + # 更新配置 + config.update({ + "cfg_scale": cfg_scale, + "negative_prompt": negative_prompt, + "positive_prompt": positive_prompt, + "inference_steps": inference_steps, + "guidance_scale": guidance_scale, + "guidance_steps": guidance_steps, + "warm_up_steps": warm_up_steps, + "cool_up_steps": cool_up_steps, + "motion_guidance_weight": motion_guidance_weight, + "motion_guidance_blocks": motion_guidance_blocks, + "add_noise_step": add_noise_step + }) + + # 设置环境变量 + os.environ["CUDA_VISIBLE_DEVICES"] = visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0)) + + # 创建保存目录 + if not os.path.exists(generated_videos_save_dir): + os.makedirs(generated_videos_save_dir) + + # 处理上传的视频 + if uploaded_video is not None: + # 将上传的视频保存到指定路径 + video_path = os.path.join(generated_videos_save_dir, os.path.basename(uploaded_video)) + shutil.move(uploaded_video, video_path) + + # 更新配置 + config["video_path"] = video_path + config["new_prompt"] = new_prompt + config.get("positive_prompt", "") + pipeline.input_config, pipeline.unet.input_config = config, config + + # 提取运动表示 + seed_motion = seed if seed is not None else default_seed + generator = torch.Generator(device=pipeline.device) + generator.manual_seed(seed_motion) + if not os.path.exists(motion_representation_save_dir): + os.makedirs(motion_representation_save_dir) + motion_representation_path = os.path.join(motion_representation_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + '.pt') + pipeline.obtain_motion_representation(generator=generator, motion_representation_path=motion_representation_path) + + # 生成视频 + seed = seed_motion + generator = torch.Generator(device=pipeline.device) + generator.manual_seed(seed) + pipeline.input_config.seed = seed + + videos = pipeline.sample_video(generator=generator) + videos = rearrange(videos, "b c f h w -> b f h w c") + save_path = os.path.join(generated_videos_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + "_" + config["new_prompt"].strip().replace(' ', '_') + str(seed_motion) + "_" + str(seed) + '.mp4') + videos_uint8 = (videos[0] * 255).astype(np.uint8) + imageio.mimwrite(save_path, videos_uint8, fps=8) + print(save_path, "is done") + + return save_path + else: + return "No video uploaded." + +# 使用 Gradio Blocks 构建界面 +with gr.Blocks() as demo: + # 页面标题和描述 + gr.Markdown("# Text-to-Video Generation") + gr.Markdown("This tool allows you to generate videos from text prompts using a pre-trained model. Upload a video, provide a new prompt, and adjust the settings to create your custom video.") + + # 主要输入区域 + with gr.Row(): + with gr.Column(): + # 视频上传 + uploaded_video = gr.Video(label="Upload Video", source="upload") + # 新提示词 + new_prompt = gr.Textbox(label="New Prompt", value="A beautiful scene", lines=2) + # 种子 + seed = gr.Number(label="Seed", value=42) + # 生成按钮 + generate_button = gr.Button("Generate Video") + + with gr.Column(): + # 输出视频 + output_video = gr.Video(label="Generated Video") + + # 高级设置区域 + with gr.Accordion("Advanced Settings", open=False): + with gr.Row(): + with gr.Column(): + motion_representation_save_dir = gr.Textbox(label="Motion Representation Save Dir", value="motion_representation/") + generated_videos_save_dir = gr.Textbox(label="Generated Videos Save Dir", value="generated_videos") + visible_gpu = gr.Textbox(label="Visible GPU", value="0") + default_seed = gr.Number(label="Default Seed", value=2025) + without_xformers = gr.Checkbox(label="Without Xformers", value=False) + with gr.Column(): + cfg_scale = gr.Number(label="CFG Scale", value=7.5) + negative_prompt = gr.Textbox(label="Negative Prompt", value="bad anatomy, extra limbs, ugly, deformed, noisy, blurry, distorted, out of focus, poorly drawn face, poorly drawn hands, missing fingers") + positive_prompt = gr.Textbox(label="Positive Prompt", value="8k, high detailed, best quality, film grain, Fujifilm XT3") + inference_steps = gr.Number(label="Inference Steps", value=100) + guidance_scale = gr.Number(label="Guidance Scale", value=0.3) + guidance_steps = gr.Number(label="Guidance Steps", value=50) + warm_up_steps = gr.Number(label="Warm Up Steps", value=10) + cool_up_steps = gr.Number(label="Cool Up Steps", value=10) + motion_guidance_weight = gr.Number(label="Motion Guidance Weight", value=2000) + motion_guidance_blocks = gr.Textbox(label="Motion Guidance Blocks", value="['up_blocks.1']") + add_noise_step = gr.Number(label="Add Noise Step", value=400) + + # 绑定生成函数 + generate_button.click( + generate_video, + inputs=[ + uploaded_video, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, default_seed, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step, new_prompt, seed + ], + outputs=output_video + ) + +# 启动应用 +demo.launch(share = True) diff --git a/t2v_video_sample.py b/t2v_video_sample.py new file mode 100644 index 0000000000000000000000000000000000000000..eab68a1c1362552ad2bc76c96c6df5d2bdfbba5e --- /dev/null +++ b/t2v_video_sample.py @@ -0,0 +1,125 @@ +import argparse +from omegaconf import OmegaConf +import torch +from diffusers import AutoencoderKL, DDIMScheduler +from transformers import CLIPTextModel, CLIPTokenizer +from motionclone.models.unet import UNet3DConditionModel +from motionclone.pipelines.pipeline_animation import AnimationPipeline +from motionclone.utils.util import load_weights +from diffusers.utils.import_utils import is_xformers_available +from motionclone.utils.motionclone_functions import * +import json +from motionclone.utils.xformer_attention import * + +def main(args): + + os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0)) + + config = OmegaConf.load(args.inference_config) + adopted_dtype = torch.float16 + device = "cuda" + set_all_seed(42) + + tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype) + vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype) + + config.width = config.get("W", args.W) + config.height = config.get("H", args.H) + config.video_length = config.get("L", args.L) + + if not os.path.exists(args.generated_videos_save_dir): + os.makedirs(args.generated_videos_save_dir) + OmegaConf.save(config, os.path.join(args.generated_videos_save_dir,"inference_config.json")) + + model_config = OmegaConf.load(config.get("model_config", "")) + unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(model_config.unet_additional_kwargs),).to(device).to(dtype=adopted_dtype) + + # set xformers + if is_xformers_available() and (not args.without_xformers): + unet.enable_xformers_memory_efficient_attention() + + pipeline = AnimationPipeline( + vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, + controlnet=None, + scheduler=DDIMScheduler(**OmegaConf.to_container(model_config.noise_scheduler_kwargs)), + ).to(device) + + pipeline = load_weights( + pipeline, + # motion module + motion_module_path = config.get("motion_module", ""), + dreambooth_model_path = config.get("dreambooth_path", ""), + ).to(device) + pipeline.text_encoder.to(dtype=adopted_dtype) + + # load customized functions from motionclone_functions + pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler) + pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler) + pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet) + pipeline.sample_video = sample_video.__get__(pipeline) + pipeline.single_step_video = single_step_video.__get__(pipeline) + pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline) + pipeline.add_noise = add_noise.__get__(pipeline) + pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline) + pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline) + + for param in pipeline.unet.parameters(): + param.requires_grad = False + pipeline.input_config, pipeline.unet.input_config = config, config + + pipeline.unet = prep_unet_attention(pipeline.unet,pipeline.input_config.motion_guidance_blocks) + pipeline.unet = prep_unet_conv(pipeline.unet) + pipeline.scheduler.customized_set_timesteps(config.inference_steps, config.guidance_steps,config.guidance_scale,device=device,timestep_spacing_type = "uneven") + # pipeline.scheduler.customized_set_timesteps(config.inference_steps,device=device,timestep_spacing_type = "linspace") + with open(args.examples, 'r') as files: + for line in files: + # prepare infor of each case + example_infor = json.loads(line) + config.video_path = example_infor["video_path"] + config.new_prompt = example_infor["new_prompt"] + config.get("positive_prompt", "") + pipeline.input_config, pipeline.unet.input_config = config, config # update config + + # perform motion representation extraction + seed_motion = example_infor.get("seed", args.default_seed) + generator = torch.Generator(device=pipeline.device) + generator.manual_seed(seed_motion) + if not os.path.exists(args.motion_representation_save_dir): + os.makedirs(args.motion_representation_save_dir) + motion_representation_path = os.path.join(args.motion_representation_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] + '.pt') + pipeline.obtain_motion_representation(generator= generator, motion_representation_path = motion_representation_path) + + # perform video generation + seed = seed_motion # can assign other seed here + generator = torch.Generator(device=pipeline.device) + generator.manual_seed(seed) + pipeline.input_config.seed = seed + + videos = pipeline.sample_video(generator = generator,) + videos = rearrange(videos, "b c f h w -> b f h w c") + save_path = os.path.join(args.generated_videos_save_dir, os.path.splitext(os.path.basename(config.video_path))[0] + + "_" + config.new_prompt.strip().replace(' ', '_') + str(seed_motion) + "_" +str(seed)+'.mp4') + videos_uint8 = (videos[0] * 255).astype(np.uint8) + + imageio.mimwrite(save_path, videos_uint8, fps=8) + print(save_path,"is done") + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion",) + + parser.add_argument("--inference_config", type=str, default="configs/t2v_camera.yaml") + parser.add_argument("--examples", type=str, default="configs/t2v_camera.jsonl") + parser.add_argument("--motion-representation-save-dir", type=str, default="motion_representation/") + parser.add_argument("--generated-videos-save-dir", type=str, default="generated_videos") + + parser.add_argument("--visible_gpu", type=str, default=None) + parser.add_argument("--default-seed", type=int, default=2025) + parser.add_argument("--L", type=int, default=16) + parser.add_argument("--W", type=int, default=512) + parser.add_argument("--H", type=int, default=512) + + parser.add_argument("--without-xformers", action="store_true") + + args = parser.parse_args() + main(args)