Light-A-Video / src /animatediff_eul.py
fffiloni's picture
Migrated from GitHub
052f125 verified
import torch
from typing import List, Optional, Tuple, Union
from diffusers.utils import (
USE_PEFT_BACKEND,
BaseOutput,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
def eul_step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
fusion_latent,
pipe,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon": ## True, 计算x_0
pred_original_sample = sample - sigma * model_output
elif self.config.prediction_type == "v_prediction":
# * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
## fusion latent
pred_original_sample = fusion_latent
sigma_from = self.sigmas[self.step_index]
sigma_to = self.sigmas[self.step_index + 1]
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
dt = sigma_down - sigma
prev_sample = sample + derivative * dt
device = model_output.device
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
prev_sample = prev_sample + noise * sigma_up
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return EulerAncestralDiscreteSchedulerOutput(
prev_sample=prev_sample, pred_original_sample=pred_original_sample
)