Light-A-Video / gradio_app.py
fffiloni's picture
Update gradio_app.py
f9aae74 verified
raw
history blame
12.7 kB
import yaml
import tempfile
import gradio as gr
import os
import torch
import imageio
import argparse
from types import MethodType
import safetensors.torch as sf
import torch.nn.functional as F
from omegaconf import OmegaConf
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import MotionAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from torch.hub import download_url_to_file
from src.ic_light import BGSource
from src.animatediff_pipe import AnimateDiffVideoToVideoPipeline
from src.ic_light_pipe import StableDiffusionImg2ImgPipeline
from utils.tools import read_video
from huggingface_hub import snapshot_download, hf_hub_download
hf_hub_download(
repo_id='lllyasviel/ic-light',
filename='iclight_sd15_fc.safetensors',
local_dir='./models'
)
snapshot_download(
repo_id="stablediffusionapi/realistic-vision-v51",
local_dir="./models/stablediffusionapi/realistic-vision-v51"
)
snapshot_download(
repo_id="guoyww/animatediff-motion-adapter-v1-5-3",
local_dir="./models/guoyww/animatediff-motion-adapter-v1-5-3"
)
def main(args):
config = OmegaConf.load(args.config)
device = torch.device('cuda')
adopted_dtype = torch.float16
set_all_seed(42)
## vdm model
adapter = MotionAdapter.from_pretrained(args.motion_adapter_model)
## pipeline
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(args.sd_model, motion_adapter=adapter)
eul_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
args.sd_model,
subfolder="scheduler",
beta_schedule="linear",
)
pipe.scheduler = eul_scheduler
pipe.enable_vae_slicing()
pipe = pipe.to(device=device, dtype=adopted_dtype)
pipe.vae.requires_grad_(False)
pipe.unet.requires_grad_(False)
## ic-light model
tokenizer = CLIPTokenizer.from_pretrained(args.sd_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.sd_model, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.sd_model, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.sd_model, subfolder="unet")
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_() #torch.Size([320, 8, 3, 3])
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
## ic-light model loader
if not os.path.exists(args.ic_light_model):
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors',
dst=args.ic_light_model)
sd_offset = sf.load_file(args.ic_light_model)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
text_encoder = text_encoder.to(device=device, dtype=adopted_dtype)
vae = vae.to(device=device, dtype=adopted_dtype)
unet = unet.to(device=device, dtype=adopted_dtype)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Consistent light attention
@torch.inference_mode()
def custom_forward_CLA(self,
hidden_states,
gamma=config.get("gamma", 0.5),
encoder_hidden_states=None,
attention_mask=None,
cross_attention_kwargs=None
):
batch_size, sequence_length, channel = hidden_states.shape
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
shape = query.shape
# addition key and value
mean_key = key.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_value = value.reshape(2,-1,shape[1],shape[2],shape[3]).mean(dim=1,keepdim=True)
mean_key = mean_key.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
mean_value = mean_value.expand(-1,shape[0]//2,-1,-1,-1).reshape(shape[0],shape[1],shape[2],shape[3])
add_hidden_state = F.scaled_dot_product_attention(query, mean_key, mean_value, attn_mask=None, dropout_p=0.0, is_causal=False)
# mix
hidden_states = (1-gamma)*hidden_states + gamma*add_hidden_state
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.to_out[0](hidden_states)
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
### attention
@torch.inference_mode()
def prep_unet_self_attention(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
name_split_list = name.split(".")
cond_1 = name_split_list[0] in "up_blocks"
cond_2 = name_split_list[-1] in ('attn1')
if "Attention" in module_name and cond_1 and cond_2:
cond_3 = name_split_list[1]
if cond_3 not in "3":
module.forward = MethodType(custom_forward_CLA, module)
return unet
## consistency light attention
unet = prep_unet_self_attention(unet)
## ic-light-scheduler
ic_light_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
ic_light_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=ic_light_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
ic_light_pipe = ic_light_pipe.to(device)
############################# params ######################################
strength = config.get("strength", 0.5)
num_step = config.get("num_step", 25)
text_guide_scale = config.get("text_guide_scale", 2)
seed = config.get("seed")
image_width = config.get("width", 512)
image_height = config.get("height", 512)
n_prompt = config.get("n_prompt", "")
relight_prompt = config.get("relight_prompt", "")
video_path = config.get("video_path", "")
bg_source = BGSource[config.get("bg_source")]
save_path = config.get("save_path")
############################## infer #####################################
generator = torch.manual_seed(seed)
video_name = os.path.basename(video_path)
video_list, video_name = read_video(video_path, image_width, image_height)
print("################## begin ##################")
with torch.no_grad():
num_inference_steps = int(round(num_step / strength))
output = pipe(
ic_light_pipe=ic_light_pipe,
relight_prompt=relight_prompt,
bg_source=bg_source,
video=video_list,
prompt=relight_prompt,
strength=strength,
negative_prompt=n_prompt,
guidance_scale=text_guide_scale,
num_inference_steps=num_inference_steps,
height=image_height,
width=image_width,
generator=generator,
)
frames = output.frames[0]
results_path = f"{save_path}/relight_{video_name}"
imageio.mimwrite(results_path, frames, fps=8)
print(f"relight with bg generation! prompt:{relight_prompt}, light:{bg_source.value}, save in {results_path}.")
def infer(n_prompt, relight_prompt, video_path, bg_source, save_path,
width, height, strength, gamma, num_step, text_guide_scale, seed):
config_data = {
"n_prompt": n_prompt,
"relight_prompt": relight_prompt,
"video_path": video_path,
"bg_source": bg_source,
"save_path": save_path,
"width": width,
"height": height,
"strength": strength,
"gamma": gamma,
"num_step": num_step,
"text_guide_scale": text_guide_scale,
"seed": seed
}
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
with open(temp_file.name, 'w') as file:
yaml.dump(config_data, file, default_flow_style=False)
config_path = temp_file.name
class Args:
def __init__(self):
self.sd_model = "./models/stablediffusionapi/realistic-vision-v51"
self.motion_adapter_model = "./models/guoyww/animatediff-motion-adapter-v1-5-3"
self.ic_light_model = "./models/iclight_sd15_fc.safetensors"
self.config = config_path
args = Args()
main(args)
video_name = os.path.basename(video_path)
results_path = f"{save_path}/relight_{video_name}"
os.remove(config_path)
return results_path
with gr.Blocks() as demo:
with gr.Row():
n_prompt = gr.Textbox(label="Negative Prompt")
relight_prompt = gr.Textbox(label="Relight Prompt")
with gr.Row():
video_path = gr.Textbox(label="Video Path")
bg_source = gr.Dropdown(["NONE", "LEFT", "RIGHT", "BOTTOM", "TOP"], label="Background Source")
with gr.Row():
save_path = gr.Textbox(label="Save Path")
width = gr.Number(label="Width", value=512)
height = gr.Number(label="Height", value=512)
with gr.Row():
strength = gr.Slider(minimum=0.0, maximum=1.0, label="Strength", value=0.5)
gamma = gr.Slider(minimum=0.0, maximum=1.0, label="Gamma", value=0.5)
with gr.Row():
num_step = gr.Number(label="Number of Steps", value=25)
text_guide_scale = gr.Number(label="Text Guide Scale", value=2)
seed = gr.Number(label="Seed", value=2060)
output = gr.Textbox(label="Results Path")
submit = gr.Button("Run")
submit.click(infer, inputs=[n_prompt, relight_prompt, video_path, bg_source, save_path,
width, height, strength, gamma, num_step, text_guide_scale, seed],
outputs=output)
demo.launch()