Spaces:
Running
Running
File size: 5,167 Bytes
052f125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from PIL import Image,ImageSequence
import numpy as np
import torch
from moviepy.editor import VideoFileClip
import os
import imageio
import random
from diffusers.utils import export_to_video
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def numpy2pytorch(imgs, device, dtype):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0
h = h.movedim(-1, 1)
return h.to(device=device, dtype=dtype)
def get_fg_video(video_list, mask_list, device, dtype):
video_np = np.stack(video_list, axis=0)
mask_np = np.stack(mask_list, axis=0)
mask_bool = mask_np == 255
video_fg = np.where(mask_bool, video_np, 127)
h = torch.from_numpy(video_fg).float() / 127.0 - 1.0
h = h.movedim(-1, 1)
return h.to(device=device, dtype=dtype)
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
def gif_to_mp4(gif_path, mp4_path):
clip = VideoFileClip(gif_path)
clip.write_videofile(mp4_path)
def generate_light_sequence(light_tensor, num_frames=16, direction="r"):
if direction in "l":
target_tensor = torch.rot90(light_tensor, k=1, dims=(2, 3))
elif direction in "r":
target_tensor = torch.rot90(light_tensor, k=-1, dims=(2, 3))
else:
raise ValueError("direction must be either 'r' for right or 'l' for left")
# Generate the sequence
out_list = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1)
interpolated_matrix = (1 - t) * light_tensor + t * target_tensor
out_list.append(interpolated_matrix)
out_tensor = torch.stack(out_list, dim=0).squeeze(1)
return out_tensor
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
batch_size, channels, num_frames, height, width = video.shape ## [1, 4, 16, 512, 512]
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
return outputs
def read_video(video_path:str, image_width, image_height):
extension = video_path.split('.')[-1].lower()
video_name = os.path.basename(video_path)
video_list = []
if extension in "gif":
## input from gif
video = Image.open(video_path)
for i, frame in enumerate(ImageSequence.Iterator(video)):
frame = np.array(frame.convert("RGB"))
frame = resize_and_center_crop(frame, image_width, image_height)
video_list.append(frame)
elif extension in "mp4":
## input from mp4
reader = imageio.get_reader(video_path)
for frame in reader:
frame = resize_and_center_crop(frame, image_width, image_height)
video_list.append(frame)
else:
raise ValueError('Wrong input type')
video_list = [Image.fromarray(frame) for frame in video_list]
return video_list, video_name
def read_mask(mask_folder:str):
mask_files = os.listdir(mask_folder)
mask_files = sorted(mask_files)
mask_list = []
for mask_file in mask_files:
mask_path = os.path.join(mask_folder, mask_file)
mask = Image.open(mask_path).convert('RGB')
mask_list.append(mask)
return mask_list
def decode_latents(vae, latents, decode_chunk_size: int = 16):
latents = 1 / vae.config.scaling_factor * latents
video = []
for i in range(0, latents.shape[0], decode_chunk_size):
batch_latents = latents[i : i + decode_chunk_size]
batch_latents = vae.decode(batch_latents).sample
video.append(batch_latents)
video = torch.cat(video)
return video
def encode_video(vae, video, decode_chunk_size: int = 16) -> torch.Tensor:
latents = []
for i in range(0, len(video), decode_chunk_size):
batch_video = video[i : i + decode_chunk_size]
batch_video = vae.encode(batch_video).latent_dist.mode()
latents.append(batch_video)
return torch.cat(latents)
def vis_video(input_video, video_processor, save_path):
## shape: 1, c, f, h, w
relight_video = video_processor.postprocess_video(video=input_video, output_type="pil")
export_to_video(relight_video[0], save_path)
def set_all_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True |