Spaces:
Running
Running
File size: 6,022 Bytes
052f125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import torch
import numpy as np
from enum import Enum
import math
import torch.nn.functional as F
from utils.tools import resize_and_center_crop, numpy2pytorch, pad, decode_latents, encode_video
class BGSource(Enum):
NONE = "None"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
class Relighter:
def __init__(self,
pipeline,
relight_prompt="",
num_frames=16,
image_width=512,
image_height=512,
num_samples=1,
steps=15,
cfg=2,
lowres_denoise=0.9,
bg_source=BGSource.RIGHT,
generator=None,
):
self.pipeline = pipeline
self.image_width = image_width
self.image_height = image_height
self.num_samples = num_samples
self.steps = steps
self.cfg = cfg
self.lowres_denoise = lowres_denoise
self.bg_source = bg_source
self.generator = generator
self.device = pipeline.device
self.num_frames = num_frames
self.vae = self.pipeline.vae
self.a_prompt = "best quality"
self.n_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
positive_prompt = relight_prompt + ', ' + self.a_prompt
negative_prompt = self.n_prompt
tokenizer = self.pipeline.tokenizer
device = self.pipeline.device
vae = self.vae
conds, unconds = self.encode_prompt_pair(tokenizer, device, positive_prompt, negative_prompt)
input_bg = self.create_background()
bg = resize_and_center_crop(input_bg, self.image_width, self.image_height)
bg_latent = numpy2pytorch([bg], device, vae.dtype)
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
self.bg_latent = bg_latent.repeat(self.num_frames, 1, 1, 1) ## 固定光源
self.conds = conds.repeat(self.num_frames, 1, 1)
self.unconds = unconds.repeat(self.num_frames, 1, 1)
def encode_prompt_inner(self, tokenizer, txt):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=self.device, dtype=torch.int64)
conds = self.pipeline.text_encoder(token_ids).last_hidden_state
return conds
def encode_prompt_pair(self, tokenizer, device, positive_prompt, negative_prompt):
c = self.encode_prompt_inner(tokenizer, positive_prompt)
uc = self.encode_prompt_inner(tokenizer, negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c.to(device), uc.to(device)
def create_background(self):
max_pix = 255
min_pix = 0
print(f"max light pix:{max_pix}, min light pix:{min_pix}")
if self.bg_source == BGSource.NONE:
return None
elif self.bg_source == BGSource.LEFT:
gradient = np.linspace(max_pix, min_pix, self.image_width)
image = np.tile(gradient, (self.image_height, 1))
return np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif self.bg_source == BGSource.RIGHT:
gradient = np.linspace(min_pix, max_pix, self.image_width)
image = np.tile(gradient, (self.image_height, 1))
return np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif self.bg_source == BGSource.TOP:
gradient = np.linspace(max_pix, min_pix, self.image_height)[:, None]
image = np.tile(gradient, (1, self.image_width))
return np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif self.bg_source == BGSource.BOTTOM:
gradient = np.linspace(min_pix, max_pix, self.image_height)[:, None]
image = np.tile(gradient, (1, self.image_width))
return np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise ValueError('Wrong initial latent!')
@torch.no_grad()
def __call__(self, input_video, init_latent=None, input_strength=None):
input_latent = encode_video(self.vae, input_video)* self.vae.config.scaling_factor
if input_strength:
light_strength = input_strength
else:
light_strength = self.lowres_denoise
if not init_latent:
init_latent = self.bg_latent
latents = self.pipeline(
image=init_latent,
strength=light_strength,
prompt_embeds=self.conds,
negative_prompt_embeds=self.unconds,
width=self.image_width,
height=self.image_height,
num_inference_steps=int(round(self.steps / self.lowres_denoise)),
num_images_per_prompt=self.num_samples,
generator=self.generator,
output_type='latent',
guidance_scale=self.cfg,
cross_attention_kwargs={'concat_conds': input_latent},
).images.to(self.pipeline.vae.dtype)
relight_video = decode_latents(self.vae, latents)
return relight_video |