File size: 6,022 Bytes
052f125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import numpy as np
from enum import Enum
import math

import torch.nn.functional as F
from utils.tools import resize_and_center_crop, numpy2pytorch, pad, decode_latents, encode_video

class BGSource(Enum):
    NONE = "None"
    LEFT = "Left Light"
    RIGHT = "Right Light"
    TOP = "Top Light"
    BOTTOM = "Bottom Light"

class Relighter:
    def __init__(self, 
                 pipeline, 
                 relight_prompt="",
                 num_frames=16,
                 image_width=512,
                 image_height=512, 
                 num_samples=1, 
                 steps=15, 
                 cfg=2, 
                 lowres_denoise=0.9, 
                 bg_source=BGSource.RIGHT, 
                 generator=None,
                 ):
        
        self.pipeline = pipeline
        self.image_width = image_width
        self.image_height = image_height
        self.num_samples = num_samples
        self.steps = steps
        self.cfg = cfg
        self.lowres_denoise = lowres_denoise
        self.bg_source = bg_source
        self.generator = generator
        self.device = pipeline.device
        self.num_frames = num_frames
        self.vae = self.pipeline.vae
        
        self.a_prompt = "best quality"
        self.n_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
        positive_prompt = relight_prompt + ', ' + self.a_prompt
        negative_prompt = self.n_prompt
        tokenizer = self.pipeline.tokenizer
        device = self.pipeline.device
        vae = self.vae
        
        conds, unconds = self.encode_prompt_pair(tokenizer, device, positive_prompt, negative_prompt)
        input_bg = self.create_background()
        bg = resize_and_center_crop(input_bg, self.image_width, self.image_height)
        bg_latent = numpy2pytorch([bg], device, vae.dtype)
        bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
        
        self.bg_latent = bg_latent.repeat(self.num_frames, 1, 1, 1) ## 固定光源
        self.conds = conds.repeat(self.num_frames, 1, 1)
        self.unconds = unconds.repeat(self.num_frames, 1, 1)
        
    def encode_prompt_inner(self, tokenizer, txt):
        max_length = tokenizer.model_max_length
        chunk_length = tokenizer.model_max_length - 2
        id_start = tokenizer.bos_token_id
        id_end = tokenizer.eos_token_id
        id_pad = id_end

        tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
        chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
        chunks = [pad(ck, id_pad, max_length) for ck in chunks]

        token_ids = torch.tensor(chunks).to(device=self.device, dtype=torch.int64)
        conds = self.pipeline.text_encoder(token_ids).last_hidden_state
        return conds

    def encode_prompt_pair(self, tokenizer, device, positive_prompt, negative_prompt):
        c = self.encode_prompt_inner(tokenizer, positive_prompt)
        uc = self.encode_prompt_inner(tokenizer, negative_prompt)

        c_len = float(len(c))
        uc_len = float(len(uc))
        max_count = max(c_len, uc_len)
        c_repeat = int(math.ceil(max_count / c_len))
        uc_repeat = int(math.ceil(max_count / uc_len))
        max_chunk = max(len(c), len(uc))

        c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
        uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]

        c = torch.cat([p[None, ...] for p in c], dim=1)
        uc = torch.cat([p[None, ...] for p in uc], dim=1)

        return c.to(device), uc.to(device)

    def create_background(self):
        
        max_pix = 255
        min_pix = 0
        
        print(f"max light pix:{max_pix}, min light pix:{min_pix}")
        
        if self.bg_source == BGSource.NONE:
            return None
        elif self.bg_source == BGSource.LEFT:
            gradient = np.linspace(max_pix, min_pix, self.image_width)
            image = np.tile(gradient, (self.image_height, 1))
            return np.stack((image,) * 3, axis=-1).astype(np.uint8)
        elif self.bg_source == BGSource.RIGHT:
            gradient = np.linspace(min_pix, max_pix, self.image_width)
            image = np.tile(gradient, (self.image_height, 1))
            return np.stack((image,) * 3, axis=-1).astype(np.uint8)
        elif self.bg_source == BGSource.TOP:
            gradient = np.linspace(max_pix, min_pix, self.image_height)[:, None]
            image = np.tile(gradient, (1, self.image_width))
            return np.stack((image,) * 3, axis=-1).astype(np.uint8)
        elif self.bg_source == BGSource.BOTTOM:
            gradient = np.linspace(min_pix, max_pix, self.image_height)[:, None]
            image = np.tile(gradient, (1, self.image_width))
            return np.stack((image,) * 3, axis=-1).astype(np.uint8)
        else:
            raise ValueError('Wrong initial latent!')
    
    @torch.no_grad()
    def __call__(self, input_video, init_latent=None, input_strength=None):
        input_latent = encode_video(self.vae, input_video)* self.vae.config.scaling_factor
        
        if input_strength:
            light_strength = input_strength
        else:
            light_strength = self.lowres_denoise

        if not init_latent:
            init_latent = self.bg_latent

        latents = self.pipeline(
            image=init_latent,
            strength=light_strength,
            prompt_embeds=self.conds,
            negative_prompt_embeds=self.unconds,
            width=self.image_width,
            height=self.image_height,
            num_inference_steps=int(round(self.steps / self.lowres_denoise)),
            num_images_per_prompt=self.num_samples,
            generator=self.generator,
            output_type='latent',
            guidance_scale=self.cfg,
            cross_attention_kwargs={'concat_conds': input_latent},
        ).images.to(self.pipeline.vae.dtype)

        relight_video = decode_latents(self.vae, latents)
        return relight_video