File size: 6,538 Bytes
052f125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
<div align="center">
    <img src='__assets__/title.png'/>
</div>

---
### ⭐️ **Our team's works:** [[**MotionClone**](https://bujiazi.github.io/motionclone.github.io/)]  [[**BroadWay**](https://bujiazi.github.io/BroadWay.github.io/)] 

## Light-A-Video: Training-free Video Relighting via Progressive Light Fusion
This repository is the official implementation of Light-A-Video. It is a **training-free framework** that enables 
zero-shot illumination control of any given video sequences or foreground sequences.

<details><summary>Click for the full abstract of Light-A-Video</summary>

> Recent advancements in image relighting models, driven by large-scale datasets and pre-trained diffusion models, 
have enabled the imposition of consistent lighting. 
However, video relighting still lags, primarily due to the excessive training costs and the scarcity of diverse, high-quality video relighting datasets.
A simple application of image relighting models on a frame-by-frame basis leads to several issues: 
lighting source inconsistency and relighted appearance inconsistency, resulting in flickers in the generated videos.
In this work, we propose Light-A-Video, a training-free approach to achieve temporally smooth video relighting.
Adapted from image relighting models, Light-A-Video introduces two key techniques to enhance lighting consistency.
First, we design a Consistent Light Attention (CLA) module, which enhances cross-frame interactions within the self-attention layers 
to stabilize the generation of the background lighting source. Second, leveraging the physical principle of light transport independence, 
we apply linear blending between the source video’s appearance and the relighted appearance, using a Progressive Light Fusion (PLF) strategy to ensure smooth temporal transitions in illumination. 
Experiments show that Light-A-Video improves the temporal consistency of relighted video
while maintaining the image quality,  ensuring coherent lighting transitions across frames.
</details>

**[Light-A-Video: Training-free Video Relighting via Progressive Light Fusion]()** 
</br>
[Yujie Zhou*](https://github.com/YujieOuO/),
[Jiazi Bu*](https://github.com/Bujiazi/),
[Pengyang Ling*](https://github.com/LPengYang/),
[Pan Zhang<sup>†</sup>](https://panzhang0212.github.io/),
[Tong Wu](https://wutong16.github.io/),
[Qidong Huang](https://shikiw.github.io/),
[Jinsong Li](https://li-jinsong.github.io/),
[Xiaoyi Dong](https://scholar.google.com/citations?user=FscToE0AAAAJ&hl=en/),
[Yuhang Zang](https://yuhangzang.github.io/),
[Yuhang Cao](https://scholar.google.com/citations?hl=zh-CN&user=sJkqsqkAAAAJ),
[Anyi Rao](https://anyirao.com/),
[Jiaqi Wang](https://myownskyw7.github.io/),
[Li Niu<sup>†</sup>](https://www.ustcnewly.com/)  
(*Equal Contribution)(<sup>†</sup>Corresponding Author)

[![arXiv](https://img.shields.io/badge/arXiv-2502.08590-b31b1b.svg)](https://arxiv.org/abs/2502.08590)
[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://bujiazi.github.io/light-a-video.github.io/)

## πŸ“œ News

**[2025/2/11]** Code is available now!

**[2025/2/10]** The paper and project page are released!

## πŸ—οΈ Todo
- [ ] Release a gradio demo.

- [ ] Release Light-A-Video code with CogVideoX-2B pipeline.

## πŸ“š Gallery
We show more results in the [Project Page](https://bujiazi.github.io/light-a-video.github.io/).

<table class="center">
    <tr>
      <td><p style="text-align: center">..., red and blue neon light</p></td>
      <td><p style="text-align: center">..., sunset over sea</p></td>
    </tr>
    <tr>
      <td><img src="__assets__/cat_light.gif"></td>
      <td><img src="__assets__/boat_light.gif"></td>
    </tr>
    <tr>
      <td><p style="text-align: center">..., sunlight through the blinds</p></td>
      <td><p style="text-align: center">..., in the forest, magic golden lit</p></td>
    </tr>
    <tr>
      <td><img src="__assets__/man_light.gif"></td>
      <td><img src="__assets__/water_light.gif"></td>
    </tr>
</table>


## πŸš€ Method Overview

<div align="center">
    <img src='__assets__/pipeline.png'/>
</div>

Light-A-Video leverages the the capabilities of image relighting models and VDM motion priors to achieve temporally consistent video relighting. 
By integrating the **Consistent Light Attention** to stabilize lighting source generation and employ the **Progressive Light Fusion** strategy
for smooth appearance transitions.

## πŸ”§ Installations

### Setup repository and conda environment

```bash
git clone https://github.com/bcmi/Light-A-Video.git
cd Light-A-Video

conda create -n lav python=3.10
conda activate lav

pip install -r requirements.txt
```

## πŸ”‘ Pretrained Model Preparations
- IC-Light: [Huggingface](https://huggingface.co/lllyasviel/ic-light)
- SD RealisticVision: [Huggingface](https://huggingface.co/stablediffusionapi/realistic-vision-v51)
- Animatediff Motion-Adapter-V-1.5.3: [Huggingface](https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)

Model downloading is automatic.

## 🎈 Quick Start

### Perform video relighting with customized illumination control
```bash
# relight
python lav_relight.py --config "configs/relight/car.yaml"
```
### Perform foreground sequences relighting with background generation
A script based on [SAM2](https://github.com/facebookresearch/sam2) is provided to extract foreground sequences from videos. 
```bash
# extract foreground sequence
python sam2.py --video_name car --x 255 --y 255

# inpaint and relight
python lav_paint.py --config "configs/relight_inpaint/car.yaml"
```

## πŸ“Ž Citation 

If you find our work helpful for your research, please consider giving a star ⭐ and citation πŸ“ 
```bibtex
@article{zhou2025light,
  title={Light-A-Video: Training-free Video Relighting via Progressive Light Fusion},
  author={Zhou, Yujie and Bu, Jiazi and Ling, Pengyang and Zhang, Pan and Wu, Tong and Huang, Qidong and Li, Jinsong and Dong, Xiaoyi and Zang, Yuhang and Cao, Yuhang and others},
  journal={arXiv preprint arXiv:2502.08590},
  year={2025}
}
```

## πŸ“£ Disclaimer

This is official code of Light-A-Video.
All the copyrights of the demo images and audio are from community users. 
Feel free to contact us if you would like remove them.

## πŸ’ž Acknowledgements
The code is built upon the below repositories, we thank all the contributors for open-sourcing.
* [IC-Light](https://github.com/lllyasviel/IC-Light)
* [AnimateDiff](https://github.com/guoyww/AnimateDiff)
* [CogVideoX](https://github.com/THUDM/CogVideo)