Spaces:
svjack
/
Runtime error

LHM / app.py
DyrusQZ's picture
to fix gs error
04c1907
raw
history blame
28.7 kB
# Copyright (c) 2023-2024, Qi Zuo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# import os
# os.system("rm -rf /data-nvme/zerogpu-offload/")
# import cv2
# import time
# from PIL import Image
# import numpy as np
# import gradio as gr
# import base64
# import spaces
# import torch
# torch._dynamo.config.disable = True
# import subprocess
# import os
# import argparse
# from omegaconf import OmegaConf
# from rembg import remove
# from engine.pose_estimation.pose_estimator import PoseEstimator
# from LHM.utils.face_detector import VGGHeadDetector
# from LHM.utils.hf_hub import wrap_model_hub
# from LHM.runners.infer.utils import (
# calc_new_tgt_size_by_aspect,
# center_crop_according_to_mask,
# prepare_motion_seqs,
# resize_image_keepaspect_np,
# )
# from engine.SegmentAPI.base import Bbox
# def get_bbox(mask):
# height, width = mask.shape
# pha = mask / 255.0
# pha[pha < 0.5] = 0.0
# pha[pha >= 0.5] = 1.0
# # obtain bbox
# _h, _w = np.where(pha == 1)
# whwh = [
# _w.min().item(),
# _h.min().item(),
# _w.max().item(),
# _h.max().item(),
# ]
# box = Bbox(whwh)
# # scale box to 1.05
# scale_box = box.scale(1.1, width=width, height=height)
# return scale_box
# def infer_preprocess_image(
# rgb_path,
# mask,
# intr,
# pad_ratio,
# bg_color,
# max_tgt_size,
# aspect_standard,
# enlarge_ratio,
# render_tgt_size,
# multiply,
# need_mask=True,
# ):
# """inferece
# image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0,
# max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
# render_tgt_size=source_size, multiply=14, need_mask=True)
# """
# rgb = np.array(Image.open(rgb_path))
# rgb_raw = rgb.copy()
# bbox = get_bbox(mask)
# bbox_list = bbox.get_box()
# rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
# mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]]
# h, w, _ = rgb.shape
# assert w < h
# cur_ratio = h / w
# scale_ratio = cur_ratio / aspect_standard
# target_w = int(min(w * scale_ratio, h))
# offset_w = (target_w - w) // 2
# # resize to target ratio.
# if offset_w > 0:
# rgb = np.pad(
# rgb,
# ((0, 0), (offset_w, offset_w), (0, 0)),
# mode="constant",
# constant_values=255,
# )
# mask = np.pad(
# mask,
# ((0, 0), (offset_w, offset_w)),
# mode="constant",
# constant_values=0,
# )
# else:
# offset_w = -offset_w
# rgb = rgb[:,offset_w:-offset_w,:]
# mask = mask[:,offset_w:-offset_w]
# # resize to target ratio.
# rgb = np.pad(
# rgb,
# ((0, 0), (offset_w, offset_w), (0, 0)),
# mode="constant",
# constant_values=255,
# )
# mask = np.pad(
# mask,
# ((0, 0), (offset_w, offset_w)),
# mode="constant",
# constant_values=0,
# )
# rgb = rgb / 255.0 # normalize to [0, 1]
# mask = mask / 255.0
# mask = (mask > 0.5).astype(np.float32)
# rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
# # resize to specific size require by preprocessor of smplx-estimator.
# rgb = resize_image_keepaspect_np(rgb, max_tgt_size)
# mask = resize_image_keepaspect_np(mask, max_tgt_size)
# # crop image to enlarge human area.
# rgb, mask, offset_x, offset_y = center_crop_according_to_mask(
# rgb, mask, aspect_standard, enlarge_ratio
# )
# if intr is not None:
# intr[0, 2] -= offset_x
# intr[1, 2] -= offset_y
# # resize to render_tgt_size for training
# tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(
# cur_hw=rgb.shape[:2],
# aspect_standard=aspect_standard,
# tgt_size=render_tgt_size,
# multiply=multiply,
# )
# rgb = cv2.resize(
# rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
# )
# mask = cv2.resize(
# mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA
# )
# if intr is not None:
# # ******************** Merge *********************** #
# intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
# assert (
# abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5
# ), f"{intr[0, 2] * 2}, {rgb.shape[1]}"
# assert (
# abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5
# ), f"{intr[1, 2] * 2}, {rgb.shape[0]}"
# # ******************** Merge *********************** #
# intr[0, 2] = rgb.shape[1] // 2
# intr[1, 2] = rgb.shape[0] // 2
# rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
# mask = (
# torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0)
# ) # [1, 1, H, W]
# return rgb, mask, intr
# def parse_configs():
# parser = argparse.ArgumentParser()
# parser.add_argument("--config", type=str)
# parser.add_argument("--infer", type=str)
# args, unknown = parser.parse_known_args()
# cfg = OmegaConf.create()
# cli_cfg = OmegaConf.from_cli(unknown)
# # parse from ENV
# if os.environ.get("APP_INFER") is not None:
# args.infer = os.environ.get("APP_INFER")
# if os.environ.get("APP_MODEL_NAME") is not None:
# cli_cfg.model_name = os.environ.get("APP_MODEL_NAME")
# args.config = args.infer if args.config is None else args.config
# if args.config is not None:
# cfg_train = OmegaConf.load(args.config)
# cfg.source_size = cfg_train.dataset.source_image_res
# try:
# cfg.src_head_size = cfg_train.dataset.src_head_size
# except:
# cfg.src_head_size = 112
# cfg.render_size = cfg_train.dataset.render_image.high
# _relative_path = os.path.join(
# cfg_train.experiment.parent,
# cfg_train.experiment.child,
# os.path.basename(cli_cfg.model_name).split("_")[-1],
# )
# cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path)
# cfg.image_dump = os.path.join("exps", "images", _relative_path)
# cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path
# if args.infer is not None:
# cfg_infer = OmegaConf.load(args.infer)
# cfg.merge_with(cfg_infer)
# cfg.setdefault(
# "save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp")
# )
# cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images"))
# cfg.setdefault(
# "video_dump", os.path.join("dumps", cli_cfg.model_name, "videos")
# )
# cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes"))
# cfg.motion_video_read_fps = 6
# cfg.merge_with(cli_cfg)
# cfg.setdefault("logger", "INFO")
# assert cfg.model_name is not None, "model_name is required"
# return cfg, cfg_train
# def _build_model(cfg):
# from LHM.models import model_dict
# hf_model_cls = wrap_model_hub(model_dict["human_lrm_sapdino_bh_sd3_5"])
# model = hf_model_cls.from_pretrained(cfg.model_name)
# return model
# def launch_pretrained():
# from huggingface_hub import snapshot_download, hf_hub_download
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='assets.tar', local_dir="./")
# os.system("tar -xvf assets.tar && rm assets.tar")
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM-0.5B.tar', local_dir="./")
# os.system("tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar")
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM_prior_model.tar', local_dir="./")
# os.system("tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar")
# def launch_env_not_compile_with_cuda():
# os.system("pip install chumpy")
# os.system("pip uninstall -y basicsr")
# os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/")
# # os.system("pip install -e ./third_party/sam2")
# os.system("pip install numpy==1.23.0")
# # os.system("pip install git+https://github.com/hitsz-zuoqi/sam2/")
# # os.system("pip install git+https://github.com/ashawkey/diff-gaussian-rasterization/")
# # os.system("pip install git+https://github.com/camenduru/simple-knn/")
# os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html")
# def animation_infer(renderer, gs_model_list, query_points, smplx_params, render_c2ws, render_intrs, render_bg_colors):
# '''Inference code avoid repeat forward.
# '''
# render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(
# render_intrs[0, 0, 0, 2] * 2
# )
# # render target views
# render_res_list = []
# num_views = render_c2ws.shape[1]
# start_time = time.time()
# # render target views
# render_res_list = []
# for view_idx in range(num_views):
# render_res = renderer.forward_animate_gs(
# gs_model_list,
# query_points,
# renderer.get_single_view_smpl_data(smplx_params, view_idx),
# render_c2ws[:, view_idx : view_idx + 1],
# render_intrs[:, view_idx : view_idx + 1],
# render_h,
# render_w,
# render_bg_colors[:, view_idx : view_idx + 1],
# )
# render_res_list.append(render_res)
# print(
# f"time elpased(animate gs model per frame):{(time.time() - start_time)/num_views}"
# )
# out = defaultdict(list)
# for res in render_res_list:
# for k, v in res.items():
# if isinstance(v[0], torch.Tensor):
# out[k].append(v.detach().cpu())
# else:
# out[k].append(v)
# for k, v in out.items():
# # print(f"out key:{k}")
# if isinstance(v[0], torch.Tensor):
# out[k] = torch.concat(v, dim=1)
# if k in ["comp_rgb", "comp_mask", "comp_depth"]:
# out[k] = out[k][0].permute(
# 0, 2, 3, 1
# ) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3]
# else:
# out[k] = v
# return out
# def assert_input_image(input_image):
# if input_image is None:
# raise gr.Error("No image selected or uploaded!")
# def prepare_working_dir():
# import tempfile
# working_dir = tempfile.TemporaryDirectory()
# return working_dir
# def init_preprocessor():
# from LHM.utils.preprocess import Preprocessor
# global preprocessor
# preprocessor = Preprocessor()
# def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
# image_raw = os.path.join(working_dir.name, "raw.png")
# with Image.fromarray(image_in) as img:
# img.save(image_raw)
# image_out = os.path.join(working_dir.name, "rembg.png")
# success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
# assert success, f"Failed under preprocess_fn!"
# return image_out
# def get_image_base64(path):
# with open(path, "rb") as image_file:
# encoded_string = base64.b64encode(image_file.read()).decode()
# return f"data:image/png;base64,{encoded_string}"
# def demo_lhm(pose_estimator, face_detector, lhm, cfg):
# @spaces.GPU
# def core_fn(image: str, video_params, working_dir):
# image_raw = os.path.join(working_dir.name, "raw.png")
# with Image.fromarray(image) as img:
# img.save(image_raw)
# base_vid = os.path.basename(video_params).split("_")[0]
# smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params")
# dump_video_path = os.path.join(working_dir.name, "output.mp4")
# dump_image_path = os.path.join(working_dir.name, "output.png")
# # prepare dump paths
# omit_prefix = os.path.dirname(image_raw)
# image_name = os.path.basename(image_raw)
# uid = image_name.split(".")[0]
# subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "")
# subdir_path = (
# subdir_path[1:] if subdir_path.startswith("/") else subdir_path
# )
# print("subdir_path and uid:", subdir_path, uid)
# motion_seqs_dir = smplx_params_dir
# motion_name = os.path.dirname(
# motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir
# )
# motion_name = os.path.basename(motion_name)
# dump_image_dir = os.path.dirname(dump_image_path)
# os.makedirs(dump_image_dir, exist_ok=True)
# print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path)
# dump_tmp_dir = dump_image_dir
# shape_pose = pose_estimator(image_raw)
# assert shape_pose.is_full_body, f"The input image is illegal, {shape_pose.msg}"
# if os.path.exists(dump_video_path):
# return dump_image_path, dump_video_path
# source_size = cfg.source_size
# render_size = cfg.render_size
# render_fps = 30
# aspect_standard = 5.0 / 3
# motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
# vis_motion = cfg.get("vis_motion", False) # False
# input_np = cv2.imread(image_raw)
# output_np = remove(input_np)
# # cv2.imwrite("./vis.png", output_np)
# parsing_mask = output_np[:,:,3]
# # prepare reference image
# image, _, _ = infer_preprocess_image(
# image_raw,
# mask=parsing_mask,
# intr=None,
# pad_ratio=0,
# bg_color=1.0,
# max_tgt_size=896,
# aspect_standard=aspect_standard,
# enlarge_ratio=[1.0, 1.0],
# render_tgt_size=source_size,
# multiply=14,
# need_mask=True,
# )
# try:
# rgb = np.array(Image.open(image_path))
# rgb = torch.from_numpy(rgb).permute(2, 0, 1)
# bbox = face_detector.detect_face(rgb)
# head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])]
# head_rgb = head_rgb.permute(1, 2, 0)
# src_head_rgb = head_rgb.cpu().numpy()
# except:
# print("w/o head input!")
# src_head_rgb = np.zeros((112, 112, 3), dtype=np.uint8)
# # resize to dino size
# try:
# src_head_rgb = cv2.resize(
# src_head_rgb,
# dsize=(cfg.src_head_size, cfg.src_head_size),
# interpolation=cv2.INTER_AREA,
# ) # resize to dino size
# except:
# src_head_rgb = np.zeros(
# (cfg.src_head_size, cfg.src_head_size, 3), dtype=np.uint8
# )
# src_head_rgb = (
# torch.from_numpy(src_head_rgb / 255.0).float().permute(2, 0, 1).unsqueeze(0)
# ) # [1, 3, H, W]
# save_ref_img_path = os.path.join(
# dump_tmp_dir, "output.png"
# )
# vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(
# np.uint8
# )
# Image.fromarray(vis_ref_img).save(save_ref_img_path)
# # read motion seq
# motion_name = os.path.dirname(
# motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir
# )
# motion_name = os.path.basename(motion_name)
# motion_seq = prepare_motion_seqs(
# motion_seqs_dir,
# None,
# save_root=dump_tmp_dir,
# fps=30,
# bg_color=1.0,
# aspect_standard=aspect_standard,
# enlarge_ratio=[1.0, 1, 0],
# render_image_res=render_size,
# multiply=16,
# need_mask=motion_img_need_mask,
# vis_motion=vis_motion,
# )
# camera_size = len(motion_seq["motion_seqs"])
# shape_param = shape_pose.beta
# device = "cuda"
# dtype = torch.float32
# shape_param = torch.tensor(shape_param, dtype=dtype).unsqueeze(0)
# lhm.to(dtype)
# smplx_params = motion_seq['smplx_params']
# smplx_params['betas'] = shape_param.to(device)
# gs_model_list, query_points, transform_mat_neutral_pose = lhm.infer_single_view(
# image.unsqueeze(0).to(device, dtype),
# src_head_rgb.unsqueeze(0).to(device, dtype),
# None,
# None,
# render_c2ws=motion_seq["render_c2ws"].to(device),
# render_intrs=motion_seq["render_intrs"].to(device),
# render_bg_colors=motion_seq["render_bg_colors"].to(device),
# smplx_params={
# k: v.to(device) for k, v in smplx_params.items()
# },
# )
# # rendering !!!!
# start_time = time.time()
# batch_dict = dict()
# batch_size = 40 # avoid memeory out!
# for batch_i in range(0, camera_size, batch_size):
# with torch.no_grad():
# # TODO check device and dtype
# # dict_keys(['comp_rgb', 'comp_rgb_bg', 'comp_mask', 'comp_depth', '3dgs'])
# keys = [
# "root_pose",
# "body_pose",
# "jaw_pose",
# "leye_pose",
# "reye_pose",
# "lhand_pose",
# "rhand_pose",
# "trans",
# "focal",
# "princpt",
# "img_size_wh",
# "expr",
# ]
# batch_smplx_params = dict()
# batch_smplx_params["betas"] = shape_param.to(device)
# batch_smplx_params['transform_mat_neutral_pose'] = transform_mat_neutral_pose
# for key in keys:
# batch_smplx_params[key] = motion_seq["smplx_params"][key][
# :, batch_i : batch_i + batch_size
# ].to(device)
# res = lhm.animation_infer(gs_model_list, query_points, batch_smplx_params,
# render_c2ws=motion_seq["render_c2ws"][
# :, batch_i : batch_i + batch_size
# ].to(device),
# render_intrs=motion_seq["render_intrs"][
# :, batch_i : batch_i + batch_size
# ].to(device),
# render_bg_colors=motion_seq["render_bg_colors"][
# :, batch_i : batch_i + batch_size
# ].to(device),
# )
# for accumulate_key in ["comp_rgb", "comp_mask"]:
# if accumulate_key not in batch_dict:
# batch_dict[accumulate_key] = []
# batch_dict[accumulate_key].append(res[accumulate_key].detach().cpu())
# del res
# torch.cuda.empty_cache()
# for accumulate_key in ["comp_rgb", "comp_mask"]:
# batch_dict[accumulate_key] = torch.cat(batch_dict[accumulate_key], dim=0)
# print(f"time elapsed: {time.time() - start_time}")
# rgb = batch_dict["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
# mask = batch_dict["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
# mask[mask < 0.5] = 0.0
# rgb = rgb * mask + (1 - mask) * 1
# rgb = np.clip(rgb * 255, 0, 255).astype(np.uint8)
# if vis_motion:
# # print(rgb.shape, motion_seq["vis_motion_render"].shape)
# vis_ref_img = np.tile(
# cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]))[
# None, :, :, :
# ],
# (rgb.shape[0], 1, 1, 1),
# )
# rgb = np.concatenate(
# [rgb, motion_seq["vis_motion_render"], vis_ref_img], axis=2
# )
# os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
# images_to_video(
# rgb,
# output_path=dump_video_path,
# fps=render_fps,
# gradio_codec=False,
# verbose=True,
# )
# # self.infer_single(
# # image_path,
# # motion_seqs_dir=motion_seqs_dir,
# # motion_img_dir=None,
# # motion_video_read_fps=30,
# # export_video=False,
# # export_mesh=False,
# # dump_tmp_dir=dump_image_dir,
# # dump_image_dir=dump_image_dir,
# # dump_video_path=dump_video_path,
# # shape_param=shape_pose.beta,
# # )
# # status = spaces.GPU(infer_impl(
# # gradio_demo_image=image_raw,
# # gradio_motion_file=smplx_params_dir,
# # gradio_masked_image=dump_image_path,
# # gradio_video_save_path=dump_video_path
# # ))
# return dump_image_path, dump_video_path
# # if status:
# # return dump_image_path, dump_video_path
# # else:
# # return None, None
# _TITLE = '''LHM: Large Animatable Human Model'''
# _DESCRIPTION = '''
# <strong>Reconstruct a human avatar in 0.2 seconds with A100!</strong>
# '''
# with gr.Blocks(analytics_enabled=False) as demo:
# # </div>
# logo_url = "./assets/rgba_logo_new.png"
# logo_base64 = get_image_base64(logo_url)
# gr.HTML(
# f"""
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
# <div>
# <h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Animatable Human Model </h1>
# </div>
# </div>
# """
# )
# gr.HTML(
# """<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors.</h4></p>"""
# )
# # DISPLAY
# with gr.Row():
# with gr.Column(variant='panel', scale=1):
# with gr.Tabs(elem_id="openlrm_input_image"):
# with gr.TabItem('Input Image'):
# with gr.Row():
# input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image")
# # EXAMPLES
# with gr.Row():
# examples = [
# ['assets/sample_input/joker.jpg'],
# ['assets/sample_input/anime.png'],
# ['assets/sample_input/basket.png'],
# ['assets/sample_input/ai_woman1.JPG'],
# ['assets/sample_input/anime2.JPG'],
# ['assets/sample_input/anime3.JPG'],
# ['assets/sample_input/boy1.png'],
# ['assets/sample_input/choplin.jpg'],
# ['assets/sample_input/eins.JPG'],
# ['assets/sample_input/girl1.png'],
# ['assets/sample_input/girl2.png'],
# ['assets/sample_input/robot.jpg'],
# ]
# gr.Examples(
# examples=examples,
# inputs=[input_image],
# examples_per_page=20,
# )
# with gr.Column():
# with gr.Tabs(elem_id="openlrm_input_video"):
# with gr.TabItem('Input Video'):
# with gr.Row():
# video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False)
# examples = [
# # './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4',
# './assets/sample_motion/ex5/ex5_origin.mp4',
# './assets/sample_motion/girl2/girl2_origin.mp4',
# './assets/sample_motion/jntm/jntm_origin.mp4',
# './assets/sample_motion/mimo1/mimo1_origin.mp4',
# './assets/sample_motion/mimo2/mimo2_origin.mp4',
# './assets/sample_motion/mimo4/mimo4_origin.mp4',
# './assets/sample_motion/mimo5/mimo5_origin.mp4',
# './assets/sample_motion/mimo6/mimo6_origin.mp4',
# './assets/sample_motion/nezha/nezha_origin.mp4',
# './assets/sample_motion/taiji/taiji_origin.mp4'
# ]
# gr.Examples(
# examples=examples,
# inputs=[video_input],
# examples_per_page=20,
# )
# with gr.Column(variant='panel', scale=1):
# with gr.Tabs(elem_id="openlrm_processed_image"):
# with gr.TabItem('Processed Image'):
# with gr.Row():
# processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False)
# with gr.Column(variant='panel', scale=1):
# with gr.Tabs(elem_id="openlrm_render_video"):
# with gr.TabItem('Rendered Video'):
# with gr.Row():
# output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True)
# # SETTING
# with gr.Row():
# with gr.Column(variant='panel', scale=1):
# submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
# working_dir = gr.State()
# submit.click(
# fn=assert_input_image,
# inputs=[input_image],
# queue=False,
# ).success(
# fn=prepare_working_dir,
# outputs=[working_dir],
# queue=False,
# ).success(
# fn=core_fn,
# inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
# outputs=[processed_image, output_video],
# )
# demo.queue()
# demo.launch()
# def launch_gradio_app():
# os.environ.update({
# "APP_ENABLED": "1",
# "APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/",
# "APP_INFER": "./configs/inference/human-lrm-500M.yaml",
# "APP_TYPE": "infer.human_lrm",
# "NUMBA_THREADING_LAYER": 'omp',
# })
# # from LHM.runners import REGISTRY_RUNNERS
# # RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
# # with RunnerClass() as runner:
# # runner.to('cuda')
# # demo_lhm(infer_impl=runner.infer)
# facedetector = VGGHeadDetector(
# "./pretrained_models/gagatracker/vgghead/vgg_heads_l.trcd",
# device='cpu',
# )
# facedetector.to('cuda')
# pose_estimator = PoseEstimator(
# "./pretrained_models/human_model_files/", device='cpu'
# )
# pose_estimator.to('cuda')
# pose_estimator.device = 'cuda'
# cfg, cfg_train = parse_configs()
# lhm = _build_model(cfg)
# lhm.to('cuda')
# demo_lhm(pose_estimator, facedetector, lhm, cfg)
# if __name__ == '__main__':
# # launch_pretrained()
# # launch_env_not_compile_with_cuda()
# launch_gradio_app()
import gradio as gr
def greet(name):
return "Hello " + name + "!!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()