# Copyright (c) 2023-2024, Qi Zuo | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# import os | |
# os.system("rm -rf /data-nvme/zerogpu-offload/") | |
# import cv2 | |
# import time | |
# from PIL import Image | |
# import numpy as np | |
# import gradio as gr | |
# import base64 | |
# import spaces | |
# import torch | |
# torch._dynamo.config.disable = True | |
# import subprocess | |
# import os | |
# import argparse | |
# from omegaconf import OmegaConf | |
# from rembg import remove | |
# from engine.pose_estimation.pose_estimator import PoseEstimator | |
# from LHM.utils.face_detector import VGGHeadDetector | |
# from LHM.utils.hf_hub import wrap_model_hub | |
# from LHM.runners.infer.utils import ( | |
# calc_new_tgt_size_by_aspect, | |
# center_crop_according_to_mask, | |
# prepare_motion_seqs, | |
# resize_image_keepaspect_np, | |
# ) | |
# from engine.SegmentAPI.base import Bbox | |
# def get_bbox(mask): | |
# height, width = mask.shape | |
# pha = mask / 255.0 | |
# pha[pha < 0.5] = 0.0 | |
# pha[pha >= 0.5] = 1.0 | |
# # obtain bbox | |
# _h, _w = np.where(pha == 1) | |
# whwh = [ | |
# _w.min().item(), | |
# _h.min().item(), | |
# _w.max().item(), | |
# _h.max().item(), | |
# ] | |
# box = Bbox(whwh) | |
# # scale box to 1.05 | |
# scale_box = box.scale(1.1, width=width, height=height) | |
# return scale_box | |
# def infer_preprocess_image( | |
# rgb_path, | |
# mask, | |
# intr, | |
# pad_ratio, | |
# bg_color, | |
# max_tgt_size, | |
# aspect_standard, | |
# enlarge_ratio, | |
# render_tgt_size, | |
# multiply, | |
# need_mask=True, | |
# ): | |
# """inferece | |
# image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0, | |
# max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0], | |
# render_tgt_size=source_size, multiply=14, need_mask=True) | |
# """ | |
# rgb = np.array(Image.open(rgb_path)) | |
# rgb_raw = rgb.copy() | |
# bbox = get_bbox(mask) | |
# bbox_list = bbox.get_box() | |
# rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]] | |
# mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]] | |
# h, w, _ = rgb.shape | |
# assert w < h | |
# cur_ratio = h / w | |
# scale_ratio = cur_ratio / aspect_standard | |
# target_w = int(min(w * scale_ratio, h)) | |
# offset_w = (target_w - w) // 2 | |
# # resize to target ratio. | |
# if offset_w > 0: | |
# rgb = np.pad( | |
# rgb, | |
# ((0, 0), (offset_w, offset_w), (0, 0)), | |
# mode="constant", | |
# constant_values=255, | |
# ) | |
# mask = np.pad( | |
# mask, | |
# ((0, 0), (offset_w, offset_w)), | |
# mode="constant", | |
# constant_values=0, | |
# ) | |
# else: | |
# offset_w = -offset_w | |
# rgb = rgb[:,offset_w:-offset_w,:] | |
# mask = mask[:,offset_w:-offset_w] | |
# # resize to target ratio. | |
# rgb = np.pad( | |
# rgb, | |
# ((0, 0), (offset_w, offset_w), (0, 0)), | |
# mode="constant", | |
# constant_values=255, | |
# ) | |
# mask = np.pad( | |
# mask, | |
# ((0, 0), (offset_w, offset_w)), | |
# mode="constant", | |
# constant_values=0, | |
# ) | |
# rgb = rgb / 255.0 # normalize to [0, 1] | |
# mask = mask / 255.0 | |
# mask = (mask > 0.5).astype(np.float32) | |
# rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) | |
# # resize to specific size require by preprocessor of smplx-estimator. | |
# rgb = resize_image_keepaspect_np(rgb, max_tgt_size) | |
# mask = resize_image_keepaspect_np(mask, max_tgt_size) | |
# # crop image to enlarge human area. | |
# rgb, mask, offset_x, offset_y = center_crop_according_to_mask( | |
# rgb, mask, aspect_standard, enlarge_ratio | |
# ) | |
# if intr is not None: | |
# intr[0, 2] -= offset_x | |
# intr[1, 2] -= offset_y | |
# # resize to render_tgt_size for training | |
# tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect( | |
# cur_hw=rgb.shape[:2], | |
# aspect_standard=aspect_standard, | |
# tgt_size=render_tgt_size, | |
# multiply=multiply, | |
# ) | |
# rgb = cv2.resize( | |
# rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA | |
# ) | |
# mask = cv2.resize( | |
# mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA | |
# ) | |
# if intr is not None: | |
# # ******************** Merge *********************** # | |
# intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) | |
# assert ( | |
# abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5 | |
# ), f"{intr[0, 2] * 2}, {rgb.shape[1]}" | |
# assert ( | |
# abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5 | |
# ), f"{intr[1, 2] * 2}, {rgb.shape[0]}" | |
# # ******************** Merge *********************** # | |
# intr[0, 2] = rgb.shape[1] // 2 | |
# intr[1, 2] = rgb.shape[0] // 2 | |
# rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W] | |
# mask = ( | |
# torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) | |
# ) # [1, 1, H, W] | |
# return rgb, mask, intr | |
# def parse_configs(): | |
# parser = argparse.ArgumentParser() | |
# parser.add_argument("--config", type=str) | |
# parser.add_argument("--infer", type=str) | |
# args, unknown = parser.parse_known_args() | |
# cfg = OmegaConf.create() | |
# cli_cfg = OmegaConf.from_cli(unknown) | |
# # parse from ENV | |
# if os.environ.get("APP_INFER") is not None: | |
# args.infer = os.environ.get("APP_INFER") | |
# if os.environ.get("APP_MODEL_NAME") is not None: | |
# cli_cfg.model_name = os.environ.get("APP_MODEL_NAME") | |
# args.config = args.infer if args.config is None else args.config | |
# if args.config is not None: | |
# cfg_train = OmegaConf.load(args.config) | |
# cfg.source_size = cfg_train.dataset.source_image_res | |
# try: | |
# cfg.src_head_size = cfg_train.dataset.src_head_size | |
# except: | |
# cfg.src_head_size = 112 | |
# cfg.render_size = cfg_train.dataset.render_image.high | |
# _relative_path = os.path.join( | |
# cfg_train.experiment.parent, | |
# cfg_train.experiment.child, | |
# os.path.basename(cli_cfg.model_name).split("_")[-1], | |
# ) | |
# cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path) | |
# cfg.image_dump = os.path.join("exps", "images", _relative_path) | |
# cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path | |
# if args.infer is not None: | |
# cfg_infer = OmegaConf.load(args.infer) | |
# cfg.merge_with(cfg_infer) | |
# cfg.setdefault( | |
# "save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp") | |
# ) | |
# cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images")) | |
# cfg.setdefault( | |
# "video_dump", os.path.join("dumps", cli_cfg.model_name, "videos") | |
# ) | |
# cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes")) | |
# cfg.motion_video_read_fps = 6 | |
# cfg.merge_with(cli_cfg) | |
# cfg.setdefault("logger", "INFO") | |
# assert cfg.model_name is not None, "model_name is required" | |
# return cfg, cfg_train | |
# def _build_model(cfg): | |
# from LHM.models import model_dict | |
# hf_model_cls = wrap_model_hub(model_dict["human_lrm_sapdino_bh_sd3_5"]) | |
# model = hf_model_cls.from_pretrained(cfg.model_name) | |
# return model | |
# def launch_pretrained(): | |
# from huggingface_hub import snapshot_download, hf_hub_download | |
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='assets.tar', local_dir="./") | |
# os.system("tar -xvf assets.tar && rm assets.tar") | |
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM-0.5B.tar', local_dir="./") | |
# os.system("tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar") | |
# hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM_prior_model.tar', local_dir="./") | |
# os.system("tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar") | |
# def launch_env_not_compile_with_cuda(): | |
# os.system("pip install chumpy") | |
# os.system("pip uninstall -y basicsr") | |
# os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/") | |
# # os.system("pip install -e ./third_party/sam2") | |
# os.system("pip install numpy==1.23.0") | |
# # os.system("pip install git+https://github.com/hitsz-zuoqi/sam2/") | |
# # os.system("pip install git+https://github.com/ashawkey/diff-gaussian-rasterization/") | |
# # os.system("pip install git+https://github.com/camenduru/simple-knn/") | |
# os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html") | |
# def animation_infer(renderer, gs_model_list, query_points, smplx_params, render_c2ws, render_intrs, render_bg_colors): | |
# '''Inference code avoid repeat forward. | |
# ''' | |
# render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int( | |
# render_intrs[0, 0, 0, 2] * 2 | |
# ) | |
# # render target views | |
# render_res_list = [] | |
# num_views = render_c2ws.shape[1] | |
# start_time = time.time() | |
# # render target views | |
# render_res_list = [] | |
# for view_idx in range(num_views): | |
# render_res = renderer.forward_animate_gs( | |
# gs_model_list, | |
# query_points, | |
# renderer.get_single_view_smpl_data(smplx_params, view_idx), | |
# render_c2ws[:, view_idx : view_idx + 1], | |
# render_intrs[:, view_idx : view_idx + 1], | |
# render_h, | |
# render_w, | |
# render_bg_colors[:, view_idx : view_idx + 1], | |
# ) | |
# render_res_list.append(render_res) | |
# print( | |
# f"time elpased(animate gs model per frame):{(time.time() - start_time)/num_views}" | |
# ) | |
# out = defaultdict(list) | |
# for res in render_res_list: | |
# for k, v in res.items(): | |
# if isinstance(v[0], torch.Tensor): | |
# out[k].append(v.detach().cpu()) | |
# else: | |
# out[k].append(v) | |
# for k, v in out.items(): | |
# # print(f"out key:{k}") | |
# if isinstance(v[0], torch.Tensor): | |
# out[k] = torch.concat(v, dim=1) | |
# if k in ["comp_rgb", "comp_mask", "comp_depth"]: | |
# out[k] = out[k][0].permute( | |
# 0, 2, 3, 1 | |
# ) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3] | |
# else: | |
# out[k] = v | |
# return out | |
# def assert_input_image(input_image): | |
# if input_image is None: | |
# raise gr.Error("No image selected or uploaded!") | |
# def prepare_working_dir(): | |
# import tempfile | |
# working_dir = tempfile.TemporaryDirectory() | |
# return working_dir | |
# def init_preprocessor(): | |
# from LHM.utils.preprocess import Preprocessor | |
# global preprocessor | |
# preprocessor = Preprocessor() | |
# def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir): | |
# image_raw = os.path.join(working_dir.name, "raw.png") | |
# with Image.fromarray(image_in) as img: | |
# img.save(image_raw) | |
# image_out = os.path.join(working_dir.name, "rembg.png") | |
# success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter) | |
# assert success, f"Failed under preprocess_fn!" | |
# return image_out | |
# def get_image_base64(path): | |
# with open(path, "rb") as image_file: | |
# encoded_string = base64.b64encode(image_file.read()).decode() | |
# return f"data:image/png;base64,{encoded_string}" | |
# def demo_lhm(pose_estimator, face_detector, lhm, cfg): | |
# @spaces.GPU | |
# def core_fn(image: str, video_params, working_dir): | |
# image_raw = os.path.join(working_dir.name, "raw.png") | |
# with Image.fromarray(image) as img: | |
# img.save(image_raw) | |
# base_vid = os.path.basename(video_params).split("_")[0] | |
# smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params") | |
# dump_video_path = os.path.join(working_dir.name, "output.mp4") | |
# dump_image_path = os.path.join(working_dir.name, "output.png") | |
# # prepare dump paths | |
# omit_prefix = os.path.dirname(image_raw) | |
# image_name = os.path.basename(image_raw) | |
# uid = image_name.split(".")[0] | |
# subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "") | |
# subdir_path = ( | |
# subdir_path[1:] if subdir_path.startswith("/") else subdir_path | |
# ) | |
# print("subdir_path and uid:", subdir_path, uid) | |
# motion_seqs_dir = smplx_params_dir | |
# motion_name = os.path.dirname( | |
# motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir | |
# ) | |
# motion_name = os.path.basename(motion_name) | |
# dump_image_dir = os.path.dirname(dump_image_path) | |
# os.makedirs(dump_image_dir, exist_ok=True) | |
# print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path) | |
# dump_tmp_dir = dump_image_dir | |
# shape_pose = pose_estimator(image_raw) | |
# assert shape_pose.is_full_body, f"The input image is illegal, {shape_pose.msg}" | |
# if os.path.exists(dump_video_path): | |
# return dump_image_path, dump_video_path | |
# source_size = cfg.source_size | |
# render_size = cfg.render_size | |
# render_fps = 30 | |
# aspect_standard = 5.0 / 3 | |
# motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False | |
# vis_motion = cfg.get("vis_motion", False) # False | |
# input_np = cv2.imread(image_raw) | |
# output_np = remove(input_np) | |
# # cv2.imwrite("./vis.png", output_np) | |
# parsing_mask = output_np[:,:,3] | |
# # prepare reference image | |
# image, _, _ = infer_preprocess_image( | |
# image_raw, | |
# mask=parsing_mask, | |
# intr=None, | |
# pad_ratio=0, | |
# bg_color=1.0, | |
# max_tgt_size=896, | |
# aspect_standard=aspect_standard, | |
# enlarge_ratio=[1.0, 1.0], | |
# render_tgt_size=source_size, | |
# multiply=14, | |
# need_mask=True, | |
# ) | |
# try: | |
# rgb = np.array(Image.open(image_path)) | |
# rgb = torch.from_numpy(rgb).permute(2, 0, 1) | |
# bbox = face_detector.detect_face(rgb) | |
# head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])] | |
# head_rgb = head_rgb.permute(1, 2, 0) | |
# src_head_rgb = head_rgb.cpu().numpy() | |
# except: | |
# print("w/o head input!") | |
# src_head_rgb = np.zeros((112, 112, 3), dtype=np.uint8) | |
# # resize to dino size | |
# try: | |
# src_head_rgb = cv2.resize( | |
# src_head_rgb, | |
# dsize=(cfg.src_head_size, cfg.src_head_size), | |
# interpolation=cv2.INTER_AREA, | |
# ) # resize to dino size | |
# except: | |
# src_head_rgb = np.zeros( | |
# (cfg.src_head_size, cfg.src_head_size, 3), dtype=np.uint8 | |
# ) | |
# src_head_rgb = ( | |
# torch.from_numpy(src_head_rgb / 255.0).float().permute(2, 0, 1).unsqueeze(0) | |
# ) # [1, 3, H, W] | |
# save_ref_img_path = os.path.join( | |
# dump_tmp_dir, "output.png" | |
# ) | |
# vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype( | |
# np.uint8 | |
# ) | |
# Image.fromarray(vis_ref_img).save(save_ref_img_path) | |
# # read motion seq | |
# motion_name = os.path.dirname( | |
# motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir | |
# ) | |
# motion_name = os.path.basename(motion_name) | |
# motion_seq = prepare_motion_seqs( | |
# motion_seqs_dir, | |
# None, | |
# save_root=dump_tmp_dir, | |
# fps=30, | |
# bg_color=1.0, | |
# aspect_standard=aspect_standard, | |
# enlarge_ratio=[1.0, 1, 0], | |
# render_image_res=render_size, | |
# multiply=16, | |
# need_mask=motion_img_need_mask, | |
# vis_motion=vis_motion, | |
# ) | |
# camera_size = len(motion_seq["motion_seqs"]) | |
# shape_param = shape_pose.beta | |
# device = "cuda" | |
# dtype = torch.float32 | |
# shape_param = torch.tensor(shape_param, dtype=dtype).unsqueeze(0) | |
# lhm.to(dtype) | |
# smplx_params = motion_seq['smplx_params'] | |
# smplx_params['betas'] = shape_param.to(device) | |
# gs_model_list, query_points, transform_mat_neutral_pose = lhm.infer_single_view( | |
# image.unsqueeze(0).to(device, dtype), | |
# src_head_rgb.unsqueeze(0).to(device, dtype), | |
# None, | |
# None, | |
# render_c2ws=motion_seq["render_c2ws"].to(device), | |
# render_intrs=motion_seq["render_intrs"].to(device), | |
# render_bg_colors=motion_seq["render_bg_colors"].to(device), | |
# smplx_params={ | |
# k: v.to(device) for k, v in smplx_params.items() | |
# }, | |
# ) | |
# # rendering !!!! | |
# start_time = time.time() | |
# batch_dict = dict() | |
# batch_size = 40 # avoid memeory out! | |
# for batch_i in range(0, camera_size, batch_size): | |
# with torch.no_grad(): | |
# # TODO check device and dtype | |
# # dict_keys(['comp_rgb', 'comp_rgb_bg', 'comp_mask', 'comp_depth', '3dgs']) | |
# keys = [ | |
# "root_pose", | |
# "body_pose", | |
# "jaw_pose", | |
# "leye_pose", | |
# "reye_pose", | |
# "lhand_pose", | |
# "rhand_pose", | |
# "trans", | |
# "focal", | |
# "princpt", | |
# "img_size_wh", | |
# "expr", | |
# ] | |
# batch_smplx_params = dict() | |
# batch_smplx_params["betas"] = shape_param.to(device) | |
# batch_smplx_params['transform_mat_neutral_pose'] = transform_mat_neutral_pose | |
# for key in keys: | |
# batch_smplx_params[key] = motion_seq["smplx_params"][key][ | |
# :, batch_i : batch_i + batch_size | |
# ].to(device) | |
# res = lhm.animation_infer(gs_model_list, query_points, batch_smplx_params, | |
# render_c2ws=motion_seq["render_c2ws"][ | |
# :, batch_i : batch_i + batch_size | |
# ].to(device), | |
# render_intrs=motion_seq["render_intrs"][ | |
# :, batch_i : batch_i + batch_size | |
# ].to(device), | |
# render_bg_colors=motion_seq["render_bg_colors"][ | |
# :, batch_i : batch_i + batch_size | |
# ].to(device), | |
# ) | |
# for accumulate_key in ["comp_rgb", "comp_mask"]: | |
# if accumulate_key not in batch_dict: | |
# batch_dict[accumulate_key] = [] | |
# batch_dict[accumulate_key].append(res[accumulate_key].detach().cpu()) | |
# del res | |
# torch.cuda.empty_cache() | |
# for accumulate_key in ["comp_rgb", "comp_mask"]: | |
# batch_dict[accumulate_key] = torch.cat(batch_dict[accumulate_key], dim=0) | |
# print(f"time elapsed: {time.time() - start_time}") | |
# rgb = batch_dict["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 | |
# mask = batch_dict["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 | |
# mask[mask < 0.5] = 0.0 | |
# rgb = rgb * mask + (1 - mask) * 1 | |
# rgb = np.clip(rgb * 255, 0, 255).astype(np.uint8) | |
# if vis_motion: | |
# # print(rgb.shape, motion_seq["vis_motion_render"].shape) | |
# vis_ref_img = np.tile( | |
# cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]))[ | |
# None, :, :, : | |
# ], | |
# (rgb.shape[0], 1, 1, 1), | |
# ) | |
# rgb = np.concatenate( | |
# [rgb, motion_seq["vis_motion_render"], vis_ref_img], axis=2 | |
# ) | |
# os.makedirs(os.path.dirname(dump_video_path), exist_ok=True) | |
# images_to_video( | |
# rgb, | |
# output_path=dump_video_path, | |
# fps=render_fps, | |
# gradio_codec=False, | |
# verbose=True, | |
# ) | |
# # self.infer_single( | |
# # image_path, | |
# # motion_seqs_dir=motion_seqs_dir, | |
# # motion_img_dir=None, | |
# # motion_video_read_fps=30, | |
# # export_video=False, | |
# # export_mesh=False, | |
# # dump_tmp_dir=dump_image_dir, | |
# # dump_image_dir=dump_image_dir, | |
# # dump_video_path=dump_video_path, | |
# # shape_param=shape_pose.beta, | |
# # ) | |
# # status = spaces.GPU(infer_impl( | |
# # gradio_demo_image=image_raw, | |
# # gradio_motion_file=smplx_params_dir, | |
# # gradio_masked_image=dump_image_path, | |
# # gradio_video_save_path=dump_video_path | |
# # )) | |
# return dump_image_path, dump_video_path | |
# # if status: | |
# # return dump_image_path, dump_video_path | |
# # else: | |
# # return None, None | |
# _TITLE = '''LHM: Large Animatable Human Model''' | |
# _DESCRIPTION = ''' | |
# <strong>Reconstruct a human avatar in 0.2 seconds with A100!</strong> | |
# ''' | |
# with gr.Blocks(analytics_enabled=False) as demo: | |
# # </div> | |
# logo_url = "./assets/rgba_logo_new.png" | |
# logo_base64 = get_image_base64(logo_url) | |
# gr.HTML( | |
# f""" | |
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
# <div> | |
# <h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Animatable Human Model </h1> | |
# </div> | |
# </div> | |
# """ | |
# ) | |
# gr.HTML( | |
# """<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors.</h4></p>""" | |
# ) | |
# # DISPLAY | |
# with gr.Row(): | |
# with gr.Column(variant='panel', scale=1): | |
# with gr.Tabs(elem_id="openlrm_input_image"): | |
# with gr.TabItem('Input Image'): | |
# with gr.Row(): | |
# input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image") | |
# # EXAMPLES | |
# with gr.Row(): | |
# examples = [ | |
# ['assets/sample_input/joker.jpg'], | |
# ['assets/sample_input/anime.png'], | |
# ['assets/sample_input/basket.png'], | |
# ['assets/sample_input/ai_woman1.JPG'], | |
# ['assets/sample_input/anime2.JPG'], | |
# ['assets/sample_input/anime3.JPG'], | |
# ['assets/sample_input/boy1.png'], | |
# ['assets/sample_input/choplin.jpg'], | |
# ['assets/sample_input/eins.JPG'], | |
# ['assets/sample_input/girl1.png'], | |
# ['assets/sample_input/girl2.png'], | |
# ['assets/sample_input/robot.jpg'], | |
# ] | |
# gr.Examples( | |
# examples=examples, | |
# inputs=[input_image], | |
# examples_per_page=20, | |
# ) | |
# with gr.Column(): | |
# with gr.Tabs(elem_id="openlrm_input_video"): | |
# with gr.TabItem('Input Video'): | |
# with gr.Row(): | |
# video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False) | |
# examples = [ | |
# # './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4', | |
# './assets/sample_motion/ex5/ex5_origin.mp4', | |
# './assets/sample_motion/girl2/girl2_origin.mp4', | |
# './assets/sample_motion/jntm/jntm_origin.mp4', | |
# './assets/sample_motion/mimo1/mimo1_origin.mp4', | |
# './assets/sample_motion/mimo2/mimo2_origin.mp4', | |
# './assets/sample_motion/mimo4/mimo4_origin.mp4', | |
# './assets/sample_motion/mimo5/mimo5_origin.mp4', | |
# './assets/sample_motion/mimo6/mimo6_origin.mp4', | |
# './assets/sample_motion/nezha/nezha_origin.mp4', | |
# './assets/sample_motion/taiji/taiji_origin.mp4' | |
# ] | |
# gr.Examples( | |
# examples=examples, | |
# inputs=[video_input], | |
# examples_per_page=20, | |
# ) | |
# with gr.Column(variant='panel', scale=1): | |
# with gr.Tabs(elem_id="openlrm_processed_image"): | |
# with gr.TabItem('Processed Image'): | |
# with gr.Row(): | |
# processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False) | |
# with gr.Column(variant='panel', scale=1): | |
# with gr.Tabs(elem_id="openlrm_render_video"): | |
# with gr.TabItem('Rendered Video'): | |
# with gr.Row(): | |
# output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True) | |
# # SETTING | |
# with gr.Row(): | |
# with gr.Column(variant='panel', scale=1): | |
# submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary') | |
# working_dir = gr.State() | |
# submit.click( | |
# fn=assert_input_image, | |
# inputs=[input_image], | |
# queue=False, | |
# ).success( | |
# fn=prepare_working_dir, | |
# outputs=[working_dir], | |
# queue=False, | |
# ).success( | |
# fn=core_fn, | |
# inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir | |
# outputs=[processed_image, output_video], | |
# ) | |
# demo.queue() | |
# demo.launch() | |
# def launch_gradio_app(): | |
# os.environ.update({ | |
# "APP_ENABLED": "1", | |
# "APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/", | |
# "APP_INFER": "./configs/inference/human-lrm-500M.yaml", | |
# "APP_TYPE": "infer.human_lrm", | |
# "NUMBA_THREADING_LAYER": 'omp', | |
# }) | |
# # from LHM.runners import REGISTRY_RUNNERS | |
# # RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")] | |
# # with RunnerClass() as runner: | |
# # runner.to('cuda') | |
# # demo_lhm(infer_impl=runner.infer) | |
# facedetector = VGGHeadDetector( | |
# "./pretrained_models/gagatracker/vgghead/vgg_heads_l.trcd", | |
# device='cpu', | |
# ) | |
# facedetector.to('cuda') | |
# pose_estimator = PoseEstimator( | |
# "./pretrained_models/human_model_files/", device='cpu' | |
# ) | |
# pose_estimator.to('cuda') | |
# pose_estimator.device = 'cuda' | |
# cfg, cfg_train = parse_configs() | |
# lhm = _build_model(cfg) | |
# lhm.to('cuda') | |
# demo_lhm(pose_estimator, facedetector, lhm, cfg) | |
# if __name__ == '__main__': | |
# # launch_pretrained() | |
# # launch_env_not_compile_with_cuda() | |
# launch_gradio_app() | |
import gradio as gr | |
def greet(name): | |
return "Hello " + name + "!!" | |
demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
demo.launch() |