import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

model_midas = MidasDetector()
model_dwpose = DWposeDetector()

MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 1024
MAX_IMAGE_SIZE = 512

def process_canny_condition(image, canny_threods=[100, 200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

def process_depth_condition_midas(img, res=1024):
    h, w, _ = img.shape
    img = resize_image(HWC3(img), res)
    result = HWC3(model_midas(img))
    result = cv2.resize(result, (w, h))
    return Image.fromarray(result)

def process_dwpose_condition(image, res=1024):
    h, w, _ = image.shape
    img = resize_image(HWC3(image), res)
    out_res, out_img = model_dwpose(image)
    result = HWC3(out_img)
    result = cv2.resize(result, (w, h))
    return Image.fromarray(result)

def infer_canny(prompt,
                image=None,
                ipa_img=None,
                negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
                seed=66,
                randomize_seed=False,
                guidance_scale=5.0,
                num_inference_steps=50,
                controlnet_conditioning_scale=0.5,
                control_guidance_end=0.9,
                strength=1.0,
                ip_scale=0.5,
                ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_canny.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_canny_condition(np.array(init_image))
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end,
        ip_adapter_image=[ipa_img],
        strength=strength,
        control_image=condi_img,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

def infer_depth(prompt,
                image=None,
                ipa_img=None,
                negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
                seed=66,
                randomize_seed=False,
                guidance_scale=5.0,
                num_inference_steps=50,
                controlnet_conditioning_scale=0.5,
                control_guidance_end=0.9,
                strength=1.0,
                ip_scale=0.5,
                ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_depth.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end,
        ip_adapter_image=[ipa_img],
        strength=strength,
        control_image=condi_img,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

def infer_pose(prompt,
               image=None,
               ipa_img=None,
               negative_prompt="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
               seed=66,
               randomize_seed=False,
               guidance_scale=5.0,
               num_inference_steps=50,
               controlnet_conditioning_scale=0.5,
               control_guidance_end=0.9,
               strength=1.0,
               ip_scale=0.5,
               ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_pose.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end,
        ip_adapter_image=[ipa_img],
        strength=strength,
        control_image=condi_img,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

canny_examples = [
    ["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
     "image/woman_2.png", "image/2.png"],
]

depth_examples = [
    ["一个漂亮的女孩,最好的质量,超细节,8K画质",
     "image/1.png", "image/woman_1.png"],
]

pose_examples = [
    ["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩,超高分辨率,最佳品质,8k画质",
     "image/woman_3.png", "image/woman_4.png"],
]

css = """
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def clear_resources():
    global pipe_canny, pipe_depth, pipe_pose
    if 'pipe_canny' in globals():
        del pipe_canny
    if 'pipe_depth' in globals():
        del pipe_depth
    if 'pipe_pose' in globals():
        del pipe_pose
    torch.cuda.empty_cache()

def load_canny_pipeline():
    global pipe_canny
    controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
    pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet=controlnet_canny,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False
    )
    pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def load_depth_pipeline():
    global pipe_depth
    controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
    pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet=controlnet_depth,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False
    )
    pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def load_pose_pipeline():
    global pipe_pose
    controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
    pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet=controlnet_pose,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False
    )
    pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def switch_to_canny():
    clear_resources()
    load_canny_pipeline()
    return gr.update(visible=True)

def switch_to_depth():
    clear_resources()
    load_depth_pipeline()
    return gr.update(visible=True)

def switch_to_pose():
    clear_resources()
    load_pose_pipeline()
    return gr.update(visible=True)

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
                ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
                    ip_scale = gr.Slider(
                        label="IP_Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
            with gr.Row():
                canny_button = gr.Button("Canny", elem_id="button")
                depth_button = gr.Button("Depth", elem_id="button")
                pose_button = gr.Button("Pose", elem_id="button")

        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
            seed_used = gr.Number(label="Seed Used")

    with gr.Row():
        gr.Examples(
            fn=infer_canny,
            examples=canny_examples,
            inputs=[prompt, image, ipa_image],
            outputs=[result, seed_used],
            label="Canny"
        )
    with gr.Row():
        gr.Examples(
            fn=infer_depth,
            examples=depth_examples,
            inputs=[prompt, image, ipa_image],
            outputs=[result, seed_used],
            label="Depth"
        )
    with gr.Row():
        gr.Examples(
            fn=infer_pose,
            examples=pose_examples,
            inputs=[prompt, image, ipa_image],
            outputs=[result, seed_used],
            label="Pose"
        )

    canny_button.click(
        fn=switch_to_canny,
        outputs=[canny_button]
    ).then(
        fn=infer_canny,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs=[result, seed_used]
    )

    depth_button.click(
        fn=switch_to_depth,
        outputs=[depth_button]
    ).then(
        fn=infer_depth,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs=[result, seed_used]
    )

    pose_button.click(
        fn=switch_to_pose,
        outputs=[pose_button]
    ).then(
        fn=infer_pose,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs=[result, seed_used]
    )

Kolors.queue().launch(debug=True, share=True)