import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet=controlnet_pose,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
)

pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

model_dwpose = DWposeDetector()

def process_dwpose_condition(image, res=1024):
    h, w, _ = image.shape
    img = resize_image(HWC3(image), res)
    out_res, out_img = model_dwpose(image)
    result = HWC3(out_img)
    result = cv2.resize(result, (w, h))
    return Image.fromarray(result)

MAX_SEED = np.iinfo(np.int32).max
#MAX_IMAGE_SIZE = 1024
MAX_IMAGE_SIZE = 512

def infer_pose(prompt,
               image=None,
               ipa_img=None,
               negative_prompt="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
               seed=66,
               randomize_seed=False,
               guidance_scale=5.0,
               num_inference_steps=50,
               controlnet_conditioning_scale=0.5,
               control_guidance_end=0.9,
               strength=1.0,
               ip_scale=0.5,
               ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_pose.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt=prompt,
        image=init_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        control_guidance_end=control_guidance_end,
        ip_adapter_image=[ipa_img],
        strength=strength,
        control_image=condi_img,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

pose_examples = [
    ["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩,超高分辨率,最佳品质,8k画质",
     "image/woman_3.png", "image/woman_4.png"],
]

css = """
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as PoseApp:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
                ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
                    ip_scale = gr.Slider(
                        label="IP_Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
            with gr.Row():
                pose_button = gr.Button("Pose", elem_id="button")

        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
            seed_used = gr.Number(label="Seed Used")

    with gr.Row():
        gr.Examples(
            fn=infer_pose,
            examples=pose_examples,
            inputs=[prompt, image, ipa_image],
            outputs=[result, seed_used],
            label="Pose"
        )

    pose_button.click(
        fn=infer_pose,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs=[result, seed_used]
    )

PoseApp.queue().launch(debug=True, share=True)