Spaces:
Runtime error
Runtime error
| # Copyright 2025 Tencent InstantX Team. All rights reserved. | |
| # | |
| from PIL import Image | |
| from einops import rearrange | |
| import torch | |
| from diffusers.pipelines.flux.pipeline_flux import * | |
| from transformers import SiglipVisionModel, SiglipImageProcessor, AutoModel, AutoImageProcessor | |
| from models.attn_processor import FluxIPAttnProcessor | |
| from models.resampler import CrossLayerCrossScaleProjector | |
| from models.utils import flux_load_lora | |
| # TODO | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import FluxPipeline | |
| >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) | |
| >>> pipe.to("cuda") | |
| >>> prompt = "A cat holding a sign that says hello world" | |
| >>> # Depending on the variant being used, the pipeline call will slightly vary. | |
| >>> # Refer to the pipeline documentation for more details. | |
| >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] | |
| >>> image.save("flux.png") | |
| ``` | |
| """ | |
| class InstantCharacterFluxPipeline(FluxPipeline): | |
| def encode_siglip_image_emb(self, siglip_image, device, dtype): | |
| siglip_image = siglip_image.to(device, dtype=dtype) | |
| res = self.siglip_image_encoder(siglip_image, output_hidden_states=True) | |
| siglip_image_embeds = res.last_hidden_state | |
| siglip_image_shallow_embeds = torch.cat([res.hidden_states[i] for i in [7, 13, 26]], dim=1) | |
| return siglip_image_embeds, siglip_image_shallow_embeds | |
| def encode_dinov2_image_emb(self, dinov2_image, device, dtype): | |
| dinov2_image = dinov2_image.to(device, dtype=dtype) | |
| res = self.dino_image_encoder_2(dinov2_image, output_hidden_states=True) | |
| dinov2_image_embeds = res.last_hidden_state[:, 1:] | |
| dinov2_image_shallow_embeds = torch.cat([res.hidden_states[i][:, 1:] for i in [9, 19, 29]], dim=1) | |
| return dinov2_image_embeds, dinov2_image_shallow_embeds | |
| def encode_image_emb(self, siglip_image, device, dtype): | |
| object_image_pil = siglip_image | |
| object_image_pil_low_res = [object_image_pil.resize((384, 384))] | |
| object_image_pil_high_res = object_image_pil.resize((768, 768)) | |
| object_image_pil_high_res = [ | |
| object_image_pil_high_res.crop((0, 0, 384, 384)), | |
| object_image_pil_high_res.crop((384, 0, 768, 384)), | |
| object_image_pil_high_res.crop((0, 384, 384, 768)), | |
| object_image_pil_high_res.crop((384, 384, 768, 768)), | |
| ] | |
| nb_split_image = len(object_image_pil_high_res) | |
| siglip_image_embeds = self.encode_siglip_image_emb( | |
| self.siglip_image_processor(images=object_image_pil_low_res, return_tensors="pt").pixel_values, | |
| device, | |
| dtype | |
| ) | |
| dinov2_image_embeds = self.encode_dinov2_image_emb( | |
| self.dino_image_processor_2(images=object_image_pil_low_res, return_tensors="pt").pixel_values, | |
| device, | |
| dtype | |
| ) | |
| image_embeds_low_res_deep = torch.cat([siglip_image_embeds[0], dinov2_image_embeds[0]], dim=2) | |
| image_embeds_low_res_shallow = torch.cat([siglip_image_embeds[1], dinov2_image_embeds[1]], dim=2) | |
| siglip_image_high_res = self.siglip_image_processor(images=object_image_pil_high_res, return_tensors="pt").pixel_values | |
| siglip_image_high_res = siglip_image_high_res[None] | |
| siglip_image_high_res = rearrange(siglip_image_high_res, 'b n c h w -> (b n) c h w') | |
| siglip_image_high_res_embeds = self.encode_siglip_image_emb(siglip_image_high_res, device, dtype) | |
| siglip_image_high_res_deep = rearrange(siglip_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image) | |
| dinov2_image_high_res = self.dino_image_processor_2(images=object_image_pil_high_res, return_tensors="pt").pixel_values | |
| dinov2_image_high_res = dinov2_image_high_res[None] | |
| dinov2_image_high_res = rearrange(dinov2_image_high_res, 'b n c h w -> (b n) c h w') | |
| dinov2_image_high_res_embeds = self.encode_dinov2_image_emb(dinov2_image_high_res, device, dtype) | |
| dinov2_image_high_res_deep = rearrange(dinov2_image_high_res_embeds[0], '(b n) l c -> b (n l) c', n=nb_split_image) | |
| image_embeds_high_res_deep = torch.cat([siglip_image_high_res_deep, dinov2_image_high_res_deep], dim=2) | |
| image_embeds_dict = dict( | |
| image_embeds_low_res_shallow=image_embeds_low_res_shallow, | |
| image_embeds_low_res_deep=image_embeds_low_res_deep, | |
| image_embeds_high_res_deep=image_embeds_high_res_deep, | |
| ) | |
| return image_embeds_dict | |
| def init_ccp_and_attn_processor(self, *args, **kwargs): | |
| subject_ip_adapter_path = kwargs['subject_ip_adapter_path'] | |
| nb_token = kwargs['nb_token'] | |
| state_dict = torch.load(subject_ip_adapter_path, map_location="cpu") | |
| device, dtype = self.transformer.device, self.transformer.dtype | |
| print(f"=> init attn processor") | |
| attn_procs = {} | |
| for idx_attn, (name, v) in enumerate(self.transformer.attn_processors.items()): | |
| attn_procs[name] = FluxIPAttnProcessor( | |
| hidden_size=self.transformer.config.attention_head_dim * self.transformer.config.num_attention_heads, | |
| ip_hidden_states_dim=self.text_encoder_2.config.d_model, | |
| ).to(device, dtype=dtype) | |
| self.transformer.set_attn_processor(attn_procs) | |
| tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values()) | |
| key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
| print(f"=> load attn processor: {key_name}") | |
| print(f"=> init project") | |
| image_proj_model = CrossLayerCrossScaleProjector( | |
| inner_dim=1152 + 1536, | |
| num_attention_heads=42, | |
| attention_head_dim=64, | |
| cross_attention_dim=1152 + 1536, | |
| num_layers=4, | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=nb_token, | |
| embedding_dim=1152 + 1536, | |
| output_dim=4096, | |
| ff_mult=4, | |
| timestep_in_dim=320, | |
| timestep_flip_sin_to_cos=True, | |
| timestep_freq_shift=0, | |
| ) | |
| image_proj_model.eval() | |
| image_proj_model.to(device, dtype=dtype) | |
| key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False) | |
| print(f"=> load project: {key_name}") | |
| self.subject_image_proj_model = image_proj_model | |
| def init_adapter( | |
| self, | |
| image_encoder_path=None, | |
| image_encoder_2_path=None, | |
| subject_ipadapter_cfg=None, | |
| ): | |
| device, dtype = self.transformer.device, self.transformer.dtype | |
| # image encoder | |
| print(f"=> loading image_encoder_1: {image_encoder_path}") | |
| image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path) | |
| image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path) | |
| image_encoder.eval() | |
| image_encoder.to(device, dtype=dtype) | |
| self.siglip_image_encoder = image_encoder | |
| self.siglip_image_processor = image_processor | |
| # image encoder 2 | |
| print(f"=> loading image_encoder_2: {image_encoder_2_path}") | |
| image_encoder_2 = AutoModel.from_pretrained(image_encoder_2_path) | |
| image_processor_2 = AutoImageProcessor.from_pretrained(image_encoder_2_path) | |
| image_encoder_2.eval() | |
| image_encoder_2.to(device, dtype=dtype) | |
| image_processor_2.crop_size = dict(height=384, width=384) | |
| image_processor_2.size = dict(shortest_edge=384) | |
| self.dino_image_encoder_2 = image_encoder_2 | |
| self.dino_image_processor_2 = image_processor_2 | |
| # ccp and adapter | |
| self.init_ccp_and_attn_processor(**subject_ipadapter_cfg) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| subject_image: Image.Image = None, | |
| subject_scale: float = 0.8, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| negative_ip_adapter_image: | |
| (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| dtype = self.transformer.dtype | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| _, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3.1 Prepare subject emb | |
| if subject_image is not None: | |
| subject_image = subject_image.resize((max(subject_image.size), max(subject_image.size))) | |
| subject_image_embeds_dict = self.encode_image_emb(subject_image, device, dtype) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| # subject adapter | |
| if subject_image is not None: | |
| subject_image_prompt_embeds = self.subject_image_proj_model( | |
| low_res_shallow=subject_image_embeds_dict['image_embeds_low_res_shallow'], | |
| low_res_deep=subject_image_embeds_dict['image_embeds_low_res_deep'], | |
| high_res_deep=subject_image_embeds_dict['image_embeds_high_res_deep'], | |
| timesteps=timestep.to(dtype=latents.dtype), | |
| need_temb=True | |
| )[0] | |
| self._joint_attention_kwargs['emb_dict'] = dict( | |
| length_encoder_hidden_states=prompt_embeds.shape[1] | |
| ) | |
| self._joint_attention_kwargs['subject_emb_dict'] = dict( | |
| ip_hidden_states=subject_image_prompt_embeds, | |
| scale=subject_scale, | |
| ) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| def with_style_lora(self, lora_file_path, lora_weight=1.0, trigger='', *args, **kwargs): | |
| flux_load_lora(self, lora_file_path, lora_weight) | |
| kwargs['prompt'] = f"{trigger}, {kwargs['prompt']}" | |
| res = self.__call__(*args, **kwargs) | |
| flux_load_lora(self, lora_file_path, -lora_weight) | |
| return res | |