Spaces:
Runtime error
Runtime error
File size: 18,004 Bytes
3f6519e 8d440e6 3f6519e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
pip uninstall torch xformers torchvision torchaudio
pip install torch xformers torchvision torchaudio
'''
import os
import gradio as gr
import huggingface_hub
import pillow_avif
import spaces
import torch
import gc
from huggingface_hub import snapshot_download
from pillow_heif import register_heif_opener
from pipelines.pipeline_infu_flux import InfUFluxPipeline
# Register HEIF support for Pillow
register_heif_opener()
class ModelVersion:
STAGE_1 = "sim_stage1"
STAGE_2 = "aes_stage2"
DEFAULT_VERSION = STAGE_2
ENABLE_ANTI_BLUR_DEFAULT = False
ENABLE_REALISM_DEFAULT = False
loaded_pipeline_config = {
"model_version": "aes_stage2",
"enable_realism": False,
"enable_anti_blur": False,
'pipeline': None
}
def download_models():
snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False)
try:
snapshot_download(repo_id='black-forest-labs/FLUX.1-dev', local_dir='./models/FLUX.1-dev', local_dir_use_symlinks=False)
except Exception as e:
print(e)
print('\nYou are downloading `black-forest-labs/FLUX.1-dev` to `./models/FLUX.1-dev` but failed. '
'Please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. '
'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. '
'After that, run the code again.')
print('\nYou can also download it manually from HuggingFace and put it in `./models/InfiniteYou`, '
'or you can modify `base_model_path` in `app.py` to specify the correct path.')
exit()
def set_low_memory_mode(pipeline, enable=True):
if enable:
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
try:
pipeline.enable_xformers_memory_efficient_attention()
except:
pass
pipeline.unet.to(memory_format=torch.channels_last)
else:
pipeline.disable_model_cpu_offload()
pipeline.disable_vae_slicing()
try:
pipeline.disable_xformers_memory_efficient_attention()
except:
pass
def init_pipeline(model_version, enable_realism, enable_anti_blur):
loaded_pipeline_config["enable_realism"] = enable_realism
loaded_pipeline_config["enable_anti_blur"] = enable_anti_blur
loaded_pipeline_config["model_version"] = model_version
pipeline = loaded_pipeline_config['pipeline']
gc.collect()
torch.cuda.empty_cache()
model_path = f'./models/InfiniteYou/infu_flux_v1.0/{model_version}'
print(f'loading model from {model_path}')
pipeline = InfUFluxPipeline(
base_model_path='./models/FLUX.1-dev',
infu_model_path=model_path,
insightface_root_path='./models/InfiniteYou/supports/insightface',
image_proj_num_tokens=8,
infu_flux_version='v1.0',
model_version=model_version,
)
set_low_memory_mode(pipeline)
loaded_pipeline_config['pipeline'] = pipeline
pipeline.pipe.delete_adapters(['realism', 'anti_blur'])
loras = []
if enable_realism: loras.append(['realism', 1.0])
if enable_anti_blur: loras.append(['anti_blur', 1.0])
pipeline.load_loras_state_dict(loras)
return pipeline
def prepare_pipeline(model_version, enable_realism, enable_anti_blur):
if (
loaded_pipeline_config['pipeline'] is not None
and loaded_pipeline_config["enable_realism"] == enable_realism
and loaded_pipeline_config["enable_anti_blur"] == enable_anti_blur
and model_version == loaded_pipeline_config["model_version"]
):
return loaded_pipeline_config['pipeline']
loaded_pipeline_config["enable_realism"] = enable_realism
loaded_pipeline_config["enable_anti_blur"] = enable_anti_blur
loaded_pipeline_config["model_version"] = model_version
pipeline = loaded_pipeline_config['pipeline']
if pipeline is None or pipeline.model_version != model_version:
print(f'Switching model to {model_version}')
pipeline.model_version = model_version
if model_version == 'aes_stage2':
pipeline.infusenet_sim.cpu()
pipeline.image_proj_model_sim.cpu()
torch.cuda.empty_cache()
pipeline.infusenet_aes.to(pipeline.pipe.device)
pipeline.pipe.controlnet = pipeline.infusenet_aes
pipeline.image_proj_model_aes.to(pipeline.pipe.device)
pipeline.image_proj_model = pipeline.image_proj_model_aes
else:
pipeline.infusenet_aes.cpu()
pipeline.image_proj_model_aes.cpu()
torch.cuda.empty_cache()
pipeline.infusenet_sim.to(pipeline.pipe.device)
pipeline.pipe.controlnet = pipeline.infusenet_sim
pipeline.image_proj_model_sim.to(pipeline.pipe.device)
pipeline.image_proj_model = pipeline.image_proj_model_sim
loaded_pipeline_config['pipeline'] = pipeline
pipeline.pipe.delete_adapters(['realism', 'anti_blur'])
loras = []
if enable_realism: loras.append(['realism', 1.0])
if enable_anti_blur: loras.append(['anti_blur', 1.0])
pipeline.load_loras_state_dict(loras)
return pipeline
@spaces.GPU(duration=120)
def generate_image(
input_image,
control_image,
prompt,
seed,
width,
height,
guidance_scale,
num_steps,
infusenet_conditioning_scale,
infusenet_guidance_start,
infusenet_guidance_end,
enable_realism,
enable_anti_blur,
model_version
):
pipeline = prepare_pipeline(model_version=model_version, enable_realism=enable_realism, enable_anti_blur=enable_anti_blur)
if seed == 0:
seed = torch.seed() & 0xFFFFFFFF
try:
image = pipeline(
id_image=input_image,
prompt=prompt,
control_image=control_image,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
num_steps=num_steps,
infusenet_conditioning_scale=infusenet_conditioning_scale,
infusenet_guidance_start=infusenet_guidance_start,
infusenet_guidance_end=infusenet_guidance_end,
)
except Exception as e:
print(e)
gr.Error(f"An error occurred: {e}")
return gr.update()
return gr.update(value = image, label=f"Generated image, seed = {seed}")
def generate_examples(id_image, control_image, prompt_text, seed, enable_realism, enable_anti_blur, model_version):
return generate_image(id_image, control_image, prompt_text, seed, 864, 1152, 3.5, 30, 1.0, 0.0, 1.0, enable_realism, enable_anti_blur, model_version)
sample_list = [
['./assets/examples/yann-lecun_resize.jpg', None, 'A sophisticated gentleman exuding confidence. He is dressed in a 1990s brown plaid jacket with a high collar, paired with a dark grey turtleneck. His trousers are tailored and charcoal in color, complemented by a sleek leather belt. The background showcases an elegant library with bookshelves, a marble fireplace, and warm lighting, creating a refined and cozy atmosphere. His relaxed posture and casual hand-in-pocket stance add to his composed and stylish demeanor', 666, False, False, 'aes_stage2'],
['./assets/examples/yann-lecun_resize.jpg', './assets/examples/man_pose.jpg', 'A man, portrait, cinematic', 42, True, False, 'aes_stage2'],
['./assets/examples/yann-lecun_resize.jpg', './assets/examples/yann-lecun_resize.jpg', 'A man, portrait, cinematic', 12345, False, False, 'sim_stage1'],
['./assets/examples/yangmi.jpg', None, 'A woman, portrait, cinematic', 1621695706, False, False, 'sim_stage1'],
['./assets/examples/yangmi.jpg', None, 'A young woman holding a sign with the text "InfiniteYou", "Infinite" in black and "You" in red, pure background', 3724009366, False, False, 'aes_stage2'],
['./assets/examples/yangmi.jpg', None, 'A photo of an elegant Javanese bride in traditional attire, with long hair styled into intricate a braid made of many fresh flowers, wearing a delicate headdress made from sequins and beads. She\'s holding flowers, light smiling at the camera, against a backdrop adorned with orchid blooms. The scene captures her grace as she stands amidst soft pastel colors, adding to its dreamy atmosphere', 42, True, False, 'aes_stage2'],
['./assets/examples/yangmi.jpg', None, 'A photo of an elegant Javanese bride in traditional attire, with long hair styled into intricate a braid made of many fresh flowers, wearing a delicate headdress made from sequins and beads. She\'s holding flowers, light smiling at the camera, against a backdrop adorned with orchid blooms. The scene captures her grace as she stands amidst soft pastel colors, adding to its dreamy atmosphere', 42, False, False, 'sim_stage1'],
]
with gr.Blocks() as demo:
session_state = gr.State({})
default_model_version = "v1.0"
gr.HTML("""
<div style="text-align: center; max-width: 900px; margin: 0 auto;">
<h1 style="font-size: 1.5rem; font-weight: 700; display: block;">InfiniteYou-FLUX</h1>
<h2 style="font-size: 1.2rem; font-weight: 300; margin-bottom: 1rem; display: block;">Official Gradio Demo for <a href="https://arxiv.org/abs/2503.16418">InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity</a></h2>
<a href="https://bytedance.github.io/InfiniteYou">[Project Page]</a> 
<a href="https://arxiv.org/abs/2503.16418">[Paper]</a> 
<a href="https://github.com/bytedance/InfiniteYou">[Code]</a> 
<a href="https://huggingface.co/ByteDance/InfiniteYou">[Model]</a>
</div>
""")
gr.Markdown("""
### 💡 How to Use This Demo:
1. **Upload an identity (ID) image containing a human face.** For images with multiple faces, only the largest face will be detected. The face should ideally be clear and large enough, without significant occlusions or blur.
2. **Enter the text prompt to describe the generated image and select the model version.** Please refer to **important usage tips** under the Generated Image field.
3. *[Optional] Upload a control image containing a human face.* Only five facial keypoints will be extracted to control the generation. If not provided, we use a black control image, indicating no control.
4. *[Optional] Adjust advanced hyperparameters or apply optional LoRAs to meet personal needs.* Please refer to **important usage tips** under the Generated Image field.
5. **Click the "Generate" button to generate an image.** Enjoy!
""")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
ui_id_image = gr.Image(label="Identity Image", type="pil", scale=3, height=370, min_width=100)
with gr.Column(scale=2, min_width=100):
ui_control_image = gr.Image(label="Control Image [Optional]", type="pil", height=370, min_width=100)
ui_prompt_text = gr.Textbox(label="Prompt", value="Portrait, 4K, high quality, cinematic")
ui_model_version = gr.Dropdown(
label="Model Version",
choices=[ModelVersion.STAGE_1, ModelVersion.STAGE_2],
value=ModelVersion.DEFAULT_VERSION,
)
ui_btn_generate = gr.Button("Generate")
with gr.Accordion("Advanced", open=False):
with gr.Row():
ui_num_steps = gr.Number(label="num steps", value=30)
ui_seed = gr.Number(label="seed (0 for random)", value=0)
with gr.Row():
ui_width = gr.Number(label="width", value=864)
ui_height = gr.Number(label="height", value=1152)
ui_guidance_scale = gr.Number(label="guidance scale", value=3.5, step=0.5)
ui_infusenet_conditioning_scale = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="infusenet conditioning scale")
with gr.Row():
ui_infusenet_guidance_start = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="infusenet guidance start")
ui_infusenet_guidance_end = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="infusenet guidance end")
with gr.Accordion("LoRAs [Optional]", open=True):
with gr.Row():
ui_enable_realism = gr.Checkbox(label="Enable realism LoRA", value=ENABLE_REALISM_DEFAULT)
ui_enable_anti_blur = gr.Checkbox(label="Enable anti-blur LoRA", value=ENABLE_ANTI_BLUR_DEFAULT)
with gr.Column(scale=2):
image_output = gr.Image(label="Generated Image", interactive=False, height=550, format='png')
gr.Markdown(
"""
### ❗️ Important Usage Tips:
- **Model Version**: `aes_stage2` is used by default for better text-image alignment and aesthetics. For higher ID similarity, please try `sim_stage1`.
- **Useful Hyperparameters**: Usually, there is NO need to adjust too much. If necessary, try a slightly larger `--infusenet_guidance_start` (*e.g.*, `0.1`) only (especially helpful for `sim_stage1`). If still not satisfactory, then try a slightly smaller `--infusenet_conditioning_scale` (*e.g.*, `0.9`).
- **Optional LoRAs**: `realism` and `anti-blur`. To enable them, please check the corresponding boxes. They are optional and were NOT used in our paper.
- **Gender Prompt**: If the generated gender is not preferred, add specific words in the prompt, such as 'a man', 'a woman', *etc*. We encourage using inclusive and respectful language.
"""
)
gr.Examples(
sample_list,
inputs=[ui_id_image, ui_control_image, ui_prompt_text, ui_seed, ui_enable_realism, ui_enable_anti_blur, ui_model_version],
outputs=[image_output],
fn=generate_examples,
cache_examples=False
)
ui_btn_generate.click(
generate_image,
inputs=[
ui_id_image,
ui_control_image,
ui_prompt_text,
ui_seed,
ui_width,
ui_height,
ui_guidance_scale,
ui_num_steps,
ui_infusenet_conditioning_scale,
ui_infusenet_guidance_start,
ui_infusenet_guidance_end,
ui_enable_realism,
ui_enable_anti_blur,
ui_model_version
],
outputs=[image_output],
concurrency_id="gpu"
)
with gr.Accordion("Local Gradio Demo for Developers", open=False):
gr.Markdown(
'Please refer to our GitHub repository to [run the InfiniteYou-FLUX gradio demo locally](https://github.com/bytedance/InfiniteYou#local-gradio-demo).'
)
gr.Markdown(
"""
---
### 📜 Disclaimer and Licenses
Some images in this demo are from public domains or generated by models. These pictures are intended solely to show the capabilities of our research. If you have any concerns, please contact us, and we will promptly remove any inappropriate content.
The use of the released code, model, and demo must strictly adhere to the respective licenses.
Our code is released under the [Apache 2.0 License](https://github.com/bytedance/InfiniteYou/blob/main/LICENSE),
and our model is released under the [Creative Commons Attribution-NonCommercial 4.0 International Public License](https://huggingface.co/ByteDance/InfiniteYou/blob/main/LICENSE)
for academic research purposes only. Any manual or automatic downloading of the face models from [InsightFace](https://github.com/deepinsight/insightface),
the [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) base model, LoRAs, etc., must follow their original licenses and be used only for academic research purposes.
This research aims to positively impact the Generative AI field. Users are granted freedom to create images using this tool, but they must comply with local laws and use it responsibly. The developers do not assume any responsibility for potential misuse.
"""
)
gr.Markdown(
"""
### 📖 Citation
If you find InfiniteYou useful for your research or applications, please cite our paper:
```bibtex
@article{jiang2025infiniteyou,
title={{InfiniteYou}: Flexible Photo Recrafting While Preserving Your Identity},
author={Jiang, Liming and Yan, Qing and Jia, Yumin and Liu, Zichuan and Kang, Hao and Lu, Xin},
journal={arXiv preprint},
volume={arXiv:2503.16418},
year={2025}
}
```
We also appreciate it if you could give a star ⭐ to our [Github repository](https://github.com/bytedance/InfiniteYou). Thanks a lot!
"""
)
huggingface_hub.login(os.getenv('PRIVATE_HF_TOKEN'))
download_models()
init_pipeline(model_version=ModelVersion.DEFAULT_VERSION, enable_realism=ENABLE_REALISM_DEFAULT, enable_anti_blur=ENABLE_ANTI_BLUR_DEFAULT)
# demo.queue()
demo.launch(share = True)
# demo.launch(server_name='0.0.0.0') # IPv4
# demo.launch(server_name='[::]') # IPv6 |