File size: 31,669 Bytes
dfd2e65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
# LoRA network module: currently conv2d is not fully supported
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import numpy as np
import torch
import torch.nn as nn
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
HUNYUAN_TARGET_REPLACE_MODULES = ["MMDoubleStreamBlock", "MMSingleStreamBlock"]
class LoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
split_dims: Optional[List[int]] = None,
):
"""
if alpha == 0 or None, alpha is rank (no scaling).
split_dims is used to mimic the split qkv of multi-head attention.
"""
super().__init__()
self.lora_name = lora_name
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_dim = lora_dim
self.split_dims = split_dims
if split_dims is None:
if org_module.__class__.__name__ == "Conv2d":
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
else:
# conv2d not supported
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim"
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear"
# print(f"split_dims: {split_dims}")
self.lora_down = torch.nn.ModuleList(
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))]
)
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims])
for lora_down in self.lora_down:
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5))
for lora_up in self.lora_up:
torch.nn.init.zeros_(lora_up.weight)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # for save/load
# same as microsoft's
self.multiplier = multiplier
self.org_module = org_module # remove in applying
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
org_forwarded = self.org_forward(x)
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return org_forwarded
if self.split_dims is None:
lx = self.lora_down(x)
# normal dropout
if self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
return org_forwarded + lx * self.multiplier * scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
# normal dropout
if self.dropout is not None and self.training:
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs]
# rank dropout
if self.rank_dropout is not None and self.training:
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs]
for i in range(len(lxs)):
if len(lx.size()) == 3:
masks[i] = masks[i].unsqueeze(1)
elif len(lx.size()) == 4:
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1)
lxs[i] = lxs[i] * masks[i]
# scaling for rank dropout: treat as if the rank is changed
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale
class LoRAInfModule(LoRAModule):
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
**kwargs,
):
# no dropout for inference
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
self.org_module_ref = [org_module] # for reference
self.enabled = True
self.network: LoRANetwork = None
def set_network(self, network):
self.network = network
# merge weight to org_module
def merge_to(self, sd, dtype, device):
# extract weight from org_module
org_sd = self.org_module.state_dict()
weight = org_sd["weight"]
org_dtype = weight.dtype
org_device = weight.device
weight = weight.to(device, dtype=torch.float) # for calculation
if dtype is None:
dtype = org_dtype
if device is None:
device = org_device
if self.split_dims is None:
# get up/down weight
down_weight = sd["lora_down.weight"].to(device, dtype=torch.float)
up_weight = sd["lora_up.weight"].to(device, dtype=torch.float)
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + self.multiplier * conved * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(org_device, dtype=dtype)
self.org_module.load_state_dict(org_sd)
else:
# split_dims
total_dims = sum(self.split_dims)
for i in range(len(self.split_dims)):
# get up/down weight
down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) # (rank, in_dim)
up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) # (split dim, rank)
# pad up_weight -> (total_dims, rank)
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float)
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight
# merge weight
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
# set weight to org_module
org_sd["weight"] = weight.to(dtype)
self.org_module.load_state_dict(org_sd)
# return weight for merge
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
# get up/down weight from module
up_weight = self.lora_up.weight.to(torch.float)
down_weight = self.lora_down.weight.to(torch.float)
# pre-calculated weight
if len(down_weight.size()) == 2:
# linear
weight = self.multiplier * (up_weight @ down_weight) * self.scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
self.multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* self.scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = self.multiplier * conved * self.scale
return weight
def default_forward(self, x):
# logger.info(f"default_forward {self.lora_name} {x.size()}")
if self.split_dims is None:
lx = self.lora_down(x)
lx = self.lora_up(lx)
return self.org_forward(x) + lx * self.multiplier * self.scale
else:
lxs = [lora_down(x) for lora_down in self.lora_down]
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)]
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale
def forward(self, x):
if not self.enabled:
return self.org_forward(x)
return self.default_forward(x)
def create_network_hunyuan_video(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: nn.Module,
text_encoders: List[nn.Module],
unet: nn.Module,
neuron_dropout: Optional[float] = None,
**kwargs,
):
return create_network(
HUNYUAN_TARGET_REPLACE_MODULES,
"lora_unet",
multiplier,
network_dim,
network_alpha,
vae,
text_encoders,
unet,
neuron_dropout=neuron_dropout,
**kwargs,
)
def create_network(
target_replace_modules: List[str],
prefix: str,
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: nn.Module,
text_encoders: List[nn.Module],
unet: nn.Module,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# TODO generic rank/dim setting with regular expression
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# verbose
verbose = kwargs.get("verbose", False)
if verbose is not None:
verbose = True if verbose == "True" else False
# too many arguments ( ^ω^)・・・
network = LoRANetwork(
target_replace_modules,
prefix,
text_encoders,
unet,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
verbose=verbose,
)
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
# loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
# loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
# loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
# loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
if loraplus_lr_ratio is not None: # or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio) # , loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
return network
class LoRANetwork(torch.nn.Module):
# only supports U-Net (DiT), Text Encoders are not supported
def __init__(
self,
target_replace_modules: List[str],
prefix: str,
text_encoders: Union[List[CLIPTextModel], CLIPTextModel],
unet: nn.Module,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
module_class: Type[object] = LoRAModule,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
verbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.target_replace_modules = target_replace_modules
self.prefix = prefix
self.loraplus_lr_ratio = None
# self.loraplus_unet_lr_ratio = None
# self.loraplus_text_encoder_lr_ratio = None
if modules_dim is not None:
logger.info(f"create LoRA network from weights")
else:
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
logger.info(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
)
# if self.conv_lora_dim is not None:
# logger.info(
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
# )
# if train_t5xxl:
# logger.info(f"train T5XXL as well")
# create module instances
def create_modules(
is_unet: bool,
pfx: str,
root_module: torch.nn.Module,
target_replace_mods: List[str],
filter: Optional[str] = None,
default_dim: Optional[int] = None,
) -> List[LoRAModule]:
loras = []
skipped = []
for name, module in root_module.named_modules():
if target_replace_mods is None or module.__class__.__name__ in target_replace_mods:
if target_replace_mods is None: # dirty hack for all modules
module = root_module # search all modules
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
original_name = (name + "." if name else "") + child_name
lora_name = f"{pfx}.{original_name}".replace(".", "_")
if filter is not None and not filter in lora_name:
continue
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
skipped.append(lora_name)
continue
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
)
loras.append(lora)
if target_replace_mods is None:
break # all modules are searched
return loras, skipped
# # create LoRA for text encoder
# # it is redundant to create LoRA modules even if they are not used
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
# skipped_te = []
# for i, text_encoder in enumerate(text_encoders):
# index = i
# if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False
# break
# logger.info(f"create LoRA for Text Encoder {index+1}:")
# text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
# logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
# self.text_encoder_loras.extend(text_encoder_loras)
# skipped_te += skipped
# create LoRA for U-Net
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
self.unet_loras, skipped_un = create_modules(True, prefix, unet, target_replace_modules)
logger.info(f"create LoRA for U-Net/DiT: {len(self.unet_loras)} modules.")
if verbose:
for lora in self.unet_loras:
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}")
skipped = skipped_un
if verbose and len(skipped) > 0:
logger.warning(
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
logger.info(f"\t{name}")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def prepare_network(self, args):
"""
called after the network is created
"""
pass
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def set_enabled(self, is_enabled):
for lora in self.text_encoder_loras + self.unet_loras:
lora.enabled = is_enabled
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def apply_to(
self,
text_encoders: Optional[nn.Module],
unet: Optional[nn.Module],
apply_text_encoder: bool = True,
apply_unet: bool = True,
):
if apply_text_encoder:
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoders, unet, weights_sd, dtype=None, device=None):
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
if len(sd_for_lora) == 0:
logger.info(f"no weight for {lora.lora_name}")
continue
lora.merge_to(sd_for_lora, dtype, device)
logger.info(f"weights are merged")
def set_loraplus_lr_ratio(self, loraplus_lr_ratio): # , loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_lr_ratio}")
# logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params(self, unet_lr: float = 1e-4, **kwargs):
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, loraplus_ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if loraplus_ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * loraplus_ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.unet_loras:
params, descriptions = assemble_params(self.unet_loras, unet_lr, self.loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, unet):
self.requires_grad_(True)
def on_epoch_start(self, unet):
self.train()
def on_step_start(self):
pass
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from utils import model_utils
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = model_utils.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# 重みのバックアップを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)
def create_network_from_weights_hunyuan_video(
multiplier: float,
weights_sd: Dict[str, torch.Tensor],
text_encoders: Optional[List[nn.Module]] = None,
unet: Optional[nn.Module] = None,
for_inference: bool = False,
**kwargs,
) -> LoRANetwork:
return create_network_from_weights(
HUNYUAN_TARGET_REPLACE_MODULES, multiplier, weights_sd, text_encoders, unet, for_inference, **kwargs
)
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(
target_replace_modules: List[str],
multiplier: float,
weights_sd: Dict[str, torch.Tensor],
text_encoders: Optional[List[nn.Module]] = None,
unet: Optional[nn.Module] = None,
for_inference: bool = False,
**kwargs,
) -> LoRANetwork:
# get dim/alpha mapping
modules_dim = {}
modules_alpha = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.shape[0]
modules_dim[lora_name] = dim
# logger.info(lora_name, value.size(), dim)
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
target_replace_modules,
"lora_unet",
text_encoders,
unet,
multiplier=multiplier,
modules_dim=modules_dim,
modules_alpha=modules_alpha,
module_class=module_class,
)
return network
|