|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from flow.flow_utils import flow_calc, read_flow, read_mask |
|
|
|
|
|
class BaseGuide: |
|
|
|
def __init__(self): |
|
... |
|
|
|
def get_cmd(self, i, weight) -> str: |
|
return (f'-guide {os.path.abspath(self.imgs[0])} ' |
|
f'{os.path.abspath(self.imgs[i])} -weight {weight}') |
|
|
|
|
|
class ColorGuide(BaseGuide): |
|
|
|
def __init__(self, imgs): |
|
super().__init__() |
|
self.imgs = imgs |
|
|
|
|
|
class PositionalGuide(BaseGuide): |
|
|
|
def __init__(self, flow_paths, save_paths): |
|
super().__init__() |
|
flows = [read_flow(f) for f in flow_paths] |
|
masks = [read_mask(f) for f in flow_paths] |
|
|
|
H, W = flows[0].shape[2:] |
|
first_img = PositionalGuide.__generate_first_img(H, W) |
|
prev_img = first_img |
|
imgs = [first_img] |
|
cid = 0 |
|
for flow, mask in zip(flows, masks): |
|
cur_img = flow_calc.warp(prev_img, flow, |
|
'nearest').astype(np.uint8) |
|
cur_img = cv2.inpaint(cur_img, mask, 30, cv2.INPAINT_TELEA) |
|
prev_img = cur_img |
|
imgs.append(cur_img) |
|
cid += 1 |
|
cv2.imwrite(f'guide/{cid}.jpg', mask) |
|
|
|
for path, img in zip(save_paths, imgs): |
|
cv2.imwrite(path, img) |
|
self.imgs = save_paths |
|
|
|
@staticmethod |
|
def __generate_first_img(H, W): |
|
Hs = np.linspace(0, 1, H) |
|
Ws = np.linspace(0, 1, W) |
|
i, j = np.meshgrid(Hs, Ws, indexing='ij') |
|
r = (i * 255).astype(np.uint8) |
|
g = (j * 255).astype(np.uint8) |
|
b = np.zeros(r.shape) |
|
res = np.stack((b, g, r), 2) |
|
return res |
|
|
|
|
|
class EdgeGuide(BaseGuide): |
|
|
|
def __init__(self, imgs, save_paths): |
|
super().__init__() |
|
edges = [EdgeGuide.__generate_edge(cv2.imread(img)) for img in imgs] |
|
for path, img in zip(save_paths, edges): |
|
cv2.imwrite(path, img) |
|
self.imgs = save_paths |
|
|
|
@staticmethod |
|
def __generate_edge(img): |
|
filter = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]) |
|
res = cv2.filter2D(img, -1, filter) |
|
return res |
|
|
|
|
|
class TemporalGuide(BaseGuide): |
|
|
|
def __init__(self, key_img, stylized_imgs, flow_paths, save_paths): |
|
super().__init__() |
|
self.flows = [read_flow(f) for f in flow_paths] |
|
self.masks = [read_mask(f) for f in flow_paths] |
|
self.stylized_imgs = stylized_imgs |
|
self.imgs = save_paths |
|
|
|
first_img = cv2.imread(key_img) |
|
cv2.imwrite(self.imgs[0], first_img) |
|
|
|
def get_cmd(self, i, weight) -> str: |
|
if i == 0: |
|
warped_img = self.stylized_imgs[0] |
|
else: |
|
prev_img = cv2.imread(self.stylized_imgs[i - 1]) |
|
warped_img = flow_calc.warp(prev_img, self.flows[i - 1], |
|
'nearest').astype(np.uint8) |
|
|
|
warped_img = cv2.inpaint(warped_img, self.masks[i - 1], 30, |
|
cv2.INPAINT_TELEA) |
|
|
|
cv2.imwrite(self.imgs[i], warped_img) |
|
|
|
return super().get_cmd(i, weight) |
|
|