|
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data as data
|
|
|
|
import os
|
|
import random
|
|
from glob import glob
|
|
import os.path as osp
|
|
|
|
from utils import frame_utils
|
|
from data.transforms import FlowAugmentor, SparseFlowAugmentor
|
|
|
|
|
|
class FlowDataset(data.Dataset):
|
|
def __init__(self, aug_params=None, sparse=False,
|
|
load_occlusion=False,
|
|
):
|
|
self.augmentor = None
|
|
self.sparse = sparse
|
|
|
|
if aug_params is not None:
|
|
if sparse:
|
|
self.augmentor = SparseFlowAugmentor(**aug_params)
|
|
else:
|
|
self.augmentor = FlowAugmentor(**aug_params)
|
|
|
|
self.is_test = False
|
|
self.init_seed = False
|
|
self.flow_list = []
|
|
self.image_list = []
|
|
self.extra_info = []
|
|
|
|
self.load_occlusion = load_occlusion
|
|
self.occ_list = []
|
|
|
|
def __getitem__(self, index):
|
|
|
|
if self.is_test:
|
|
img1 = frame_utils.read_gen(self.image_list[index][0])
|
|
img2 = frame_utils.read_gen(self.image_list[index][1])
|
|
|
|
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
|
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
|
|
|
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
|
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
|
|
|
return img1, img2, self.extra_info[index]
|
|
|
|
if not self.init_seed:
|
|
worker_info = torch.utils.data.get_worker_info()
|
|
if worker_info is not None:
|
|
torch.manual_seed(worker_info.id)
|
|
np.random.seed(worker_info.id)
|
|
random.seed(worker_info.id)
|
|
self.init_seed = True
|
|
|
|
index = index % len(self.image_list)
|
|
valid = None
|
|
|
|
if self.sparse:
|
|
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index])
|
|
else:
|
|
flow = frame_utils.read_gen(self.flow_list[index])
|
|
|
|
if self.load_occlusion:
|
|
occlusion = frame_utils.read_gen(self.occ_list[index])
|
|
|
|
img1 = frame_utils.read_gen(self.image_list[index][0])
|
|
img2 = frame_utils.read_gen(self.image_list[index][1])
|
|
|
|
flow = np.array(flow).astype(np.float32)
|
|
img1 = np.array(img1).astype(np.uint8)
|
|
img2 = np.array(img2).astype(np.uint8)
|
|
|
|
if self.load_occlusion:
|
|
occlusion = np.array(occlusion).astype(np.float32)
|
|
|
|
|
|
if len(img1.shape) == 2:
|
|
img1 = np.tile(img1[..., None], (1, 1, 3))
|
|
img2 = np.tile(img2[..., None], (1, 1, 3))
|
|
else:
|
|
img1 = img1[..., :3]
|
|
img2 = img2[..., :3]
|
|
|
|
if self.augmentor is not None:
|
|
if self.sparse:
|
|
img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
|
|
else:
|
|
if self.load_occlusion:
|
|
img1, img2, flow, occlusion = self.augmentor(img1, img2, flow, occlusion=occlusion)
|
|
else:
|
|
img1, img2, flow = self.augmentor(img1, img2, flow)
|
|
|
|
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
|
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
|
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
|
|
|
|
if self.load_occlusion:
|
|
occlusion = torch.from_numpy(occlusion)
|
|
|
|
if valid is not None:
|
|
valid = torch.from_numpy(valid)
|
|
else:
|
|
valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)
|
|
|
|
|
|
if self.load_occlusion:
|
|
|
|
noc_valid = 1 - occlusion / 255.
|
|
|
|
return img1, img2, flow, valid.float(), noc_valid.float()
|
|
|
|
return img1, img2, flow, valid.float()
|
|
|
|
def __rmul__(self, v):
|
|
self.flow_list = v * self.flow_list
|
|
self.image_list = v * self.image_list
|
|
|
|
return self
|
|
|
|
def __len__(self):
|
|
return len(self.image_list)
|
|
|
|
|
|
class MpiSintel(FlowDataset):
|
|
def __init__(self, aug_params=None, split='training',
|
|
root='datasets/Sintel',
|
|
dstype='clean',
|
|
load_occlusion=False,
|
|
):
|
|
super(MpiSintel, self).__init__(aug_params,
|
|
load_occlusion=load_occlusion,
|
|
)
|
|
|
|
flow_root = osp.join(root, split, 'flow')
|
|
image_root = osp.join(root, split, dstype)
|
|
|
|
if load_occlusion:
|
|
occlusion_root = osp.join(root, split, 'occlusions')
|
|
|
|
if split == 'test':
|
|
self.is_test = True
|
|
|
|
for scene in os.listdir(image_root):
|
|
image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
|
|
for i in range(len(image_list) - 1):
|
|
self.image_list += [[image_list[i], image_list[i + 1]]]
|
|
self.extra_info += [(scene, i)]
|
|
|
|
if split != 'test':
|
|
self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))
|
|
|
|
if load_occlusion:
|
|
self.occ_list += sorted(glob(osp.join(occlusion_root, scene, '*.png')))
|
|
|
|
|
|
class FlyingChairs(FlowDataset):
|
|
def __init__(self, aug_params=None, split='train',
|
|
root='datasets/FlyingChairs_release/data',
|
|
):
|
|
super(FlyingChairs, self).__init__(aug_params)
|
|
|
|
images = sorted(glob(osp.join(root, '*.ppm')))
|
|
flows = sorted(glob(osp.join(root, '*.flo')))
|
|
assert (len(images) // 2 == len(flows))
|
|
|
|
split_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'chairs_split.txt')
|
|
split_list = np.loadtxt(split_file, dtype=np.int32)
|
|
for i in range(len(flows)):
|
|
xid = split_list[i]
|
|
if (split == 'training' and xid == 1) or (split == 'validation' and xid == 2):
|
|
self.flow_list += [flows[i]]
|
|
self.image_list += [[images[2 * i], images[2 * i + 1]]]
|
|
|
|
|
|
class FlyingThings3D(FlowDataset):
|
|
def __init__(self, aug_params=None,
|
|
root='datasets/FlyingThings3D',
|
|
dstype='frames_cleanpass',
|
|
test_set=False,
|
|
validate_subset=True,
|
|
):
|
|
super(FlyingThings3D, self).__init__(aug_params)
|
|
|
|
img_dir = root
|
|
flow_dir = root
|
|
|
|
for cam in ['left']:
|
|
for direction in ['into_future', 'into_past']:
|
|
if test_set:
|
|
image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TEST/*/*')))
|
|
else:
|
|
image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TRAIN/*/*')))
|
|
image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
|
|
|
|
if test_set:
|
|
flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TEST/*/*')))
|
|
else:
|
|
flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TRAIN/*/*')))
|
|
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
|
|
|
|
for idir, fdir in zip(image_dirs, flow_dirs):
|
|
images = sorted(glob(osp.join(idir, '*.png')))
|
|
flows = sorted(glob(osp.join(fdir, '*.pfm')))
|
|
for i in range(len(flows) - 1):
|
|
if direction == 'into_future':
|
|
self.image_list += [[images[i], images[i + 1]]]
|
|
self.flow_list += [flows[i]]
|
|
elif direction == 'into_past':
|
|
self.image_list += [[images[i + 1], images[i]]]
|
|
self.flow_list += [flows[i + 1]]
|
|
|
|
|
|
if test_set and validate_subset:
|
|
num_val_samples = 1024
|
|
all_test_samples = len(self.image_list)
|
|
|
|
stride = all_test_samples // num_val_samples
|
|
remove = all_test_samples % num_val_samples
|
|
|
|
|
|
self.image_list = self.image_list[:-remove][::stride]
|
|
self.flow_list = self.flow_list[:-remove][::stride]
|
|
|
|
|
|
class KITTI(FlowDataset):
|
|
def __init__(self, aug_params=None, split='training',
|
|
root='datasets/KITTI',
|
|
):
|
|
super(KITTI, self).__init__(aug_params, sparse=True,
|
|
)
|
|
if split == 'testing':
|
|
self.is_test = True
|
|
|
|
root = osp.join(root, split)
|
|
images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
|
|
images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))
|
|
|
|
for img1, img2 in zip(images1, images2):
|
|
frame_id = img1.split('/')[-1]
|
|
self.extra_info += [[frame_id]]
|
|
self.image_list += [[img1, img2]]
|
|
|
|
if split == 'training':
|
|
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
|
|
|
|
|
|
class HD1K(FlowDataset):
|
|
def __init__(self, aug_params=None, root='datasets/HD1K'):
|
|
super(HD1K, self).__init__(aug_params, sparse=True)
|
|
|
|
seq_ix = 0
|
|
while 1:
|
|
flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
|
|
images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))
|
|
|
|
if len(flows) == 0:
|
|
break
|
|
|
|
for i in range(len(flows) - 1):
|
|
self.flow_list += [flows[i]]
|
|
self.image_list += [[images[i], images[i + 1]]]
|
|
|
|
seq_ix += 1
|
|
|
|
|
|
def build_train_dataset(args):
|
|
""" Create the data loader for the corresponding training set """
|
|
if args.stage == 'chairs':
|
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
|
|
|
|
train_dataset = FlyingChairs(aug_params, split='training')
|
|
|
|
elif args.stage == 'things':
|
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
|
|
|
|
clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
|
|
final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
|
|
train_dataset = clean_dataset + final_dataset
|
|
|
|
elif args.stage == 'sintel':
|
|
|
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
|
|
|
|
things = FlyingThings3D(aug_params, dstype='frames_cleanpass')
|
|
|
|
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
|
|
sintel_final = MpiSintel(aug_params, split='training', dstype='final')
|
|
|
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}
|
|
|
|
kitti = KITTI(aug_params=aug_params)
|
|
|
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}
|
|
|
|
hd1k = HD1K(aug_params=aug_params)
|
|
|
|
train_dataset = 100 * sintel_clean + 100 * sintel_final + 200 * kitti + 5 * hd1k + things
|
|
|
|
elif args.stage == 'kitti':
|
|
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
|
|
|
|
train_dataset = KITTI(aug_params, split='training',
|
|
)
|
|
else:
|
|
raise ValueError(f'stage {args.stage} is not supported')
|
|
|
|
return train_dataset
|
|
|