|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def histogram_transform(img: np.ndarray, means: np.ndarray, stds: np.ndarray, |
|
target_means: np.ndarray, target_stds: np.ndarray): |
|
means = means.reshape((1, 1, 3)) |
|
stds = stds.reshape((1, 1, 3)) |
|
target_means = target_means.reshape((1, 1, 3)) |
|
target_stds = target_stds.reshape((1, 1, 3)) |
|
x = img.astype(np.float32) |
|
x = (x - means) * target_stds / stds + target_means |
|
|
|
|
|
|
|
return x |
|
|
|
|
|
def blend(a: np.ndarray, |
|
b: np.ndarray, |
|
min_error: np.ndarray, |
|
weight1=0.5, |
|
weight2=0.5): |
|
a = cv2.cvtColor(a, cv2.COLOR_BGR2Lab) |
|
b = cv2.cvtColor(b, cv2.COLOR_BGR2Lab) |
|
min_error = cv2.cvtColor(min_error, cv2.COLOR_BGR2Lab) |
|
a_mean = np.mean(a, axis=(0, 1)) |
|
a_std = np.std(a, axis=(0, 1)) |
|
b_mean = np.mean(b, axis=(0, 1)) |
|
b_std = np.std(b, axis=(0, 1)) |
|
min_error_mean = np.mean(min_error, axis=(0, 1)) |
|
min_error_std = np.std(min_error, axis=(0, 1)) |
|
|
|
t_mean_val = 0.5 * 256 |
|
t_std_val = (1 / 36) * 256 |
|
t_mean = np.ones([3], dtype=np.float32) * t_mean_val |
|
t_std = np.ones([3], dtype=np.float32) * t_std_val |
|
a = histogram_transform(a, a_mean, a_std, t_mean, t_std) |
|
|
|
b = histogram_transform(b, b_mean, b_std, t_mean, t_std) |
|
ab = (a * weight1 + b * weight2 - t_mean_val) / 0.5 + t_mean_val |
|
ab_mean = np.mean(ab, axis=(0, 1)) |
|
ab_std = np.std(ab, axis=(0, 1)) |
|
ab = histogram_transform(ab, ab_mean, ab_std, min_error_mean, |
|
min_error_std) |
|
ab = np.round(ab) |
|
ab = np.clip(ab, 0, 255) |
|
ab = ab.astype(np.uint8) |
|
ab = cv2.cvtColor(ab, cv2.COLOR_Lab2BGR) |
|
return ab |
|
|