|
import cv2 |
|
import numpy as np |
|
import scipy |
|
|
|
As = None |
|
prev_states = None |
|
|
|
|
|
def construct_A(h, w, grad_weight): |
|
indgx_x = [] |
|
indgx_y = [] |
|
indgy_x = [] |
|
indgy_y = [] |
|
vdx = [] |
|
vdy = [] |
|
for i in range(h): |
|
for j in range(w): |
|
if i < h - 1: |
|
indgx_x += [i * w + j] |
|
indgx_y += [i * w + j] |
|
vdx += [1] |
|
indgx_x += [i * w + j] |
|
indgx_y += [(i + 1) * w + j] |
|
vdx += [-1] |
|
if j < w - 1: |
|
indgy_x += [i * w + j] |
|
indgy_y += [i * w + j] |
|
vdy += [1] |
|
indgy_x += [i * w + j] |
|
indgy_y += [i * w + j + 1] |
|
vdy += [-1] |
|
Ix = scipy.sparse.coo_array( |
|
(np.ones(h * w), (np.arange(h * w), np.arange(h * w))), |
|
shape=(h * w, h * w)).tocsc() |
|
Gx = scipy.sparse.coo_array( |
|
(np.array(vdx), (np.array(indgx_x), np.array(indgx_y))), |
|
shape=(h * w, h * w)).tocsc() |
|
Gy = scipy.sparse.coo_array( |
|
(np.array(vdy), (np.array(indgy_x), np.array(indgy_y))), |
|
shape=(h * w, h * w)).tocsc() |
|
As = [] |
|
for i in range(3): |
|
As += [ |
|
scipy.sparse.vstack([Gx * grad_weight[i], Gy * grad_weight[i], Ix]) |
|
] |
|
return As |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def poisson_fusion(blendI, I1, I2, mask, grad_weight=[2.5, 0.5, 0.5]): |
|
global As |
|
global prev_states |
|
|
|
Iab = cv2.cvtColor(blendI, cv2.COLOR_BGR2LAB).astype(float) |
|
Ia = cv2.cvtColor(I1, cv2.COLOR_BGR2LAB).astype(float) |
|
Ib = cv2.cvtColor(I2, cv2.COLOR_BGR2LAB).astype(float) |
|
m = (mask > 0).astype(float)[:, :, np.newaxis] |
|
h, w, c = Iab.shape |
|
|
|
|
|
gx = np.zeros_like(Ia) |
|
gy = np.zeros_like(Ia) |
|
gx[:-1, :, :] = (Ia[:-1, :, :] - Ia[1:, :, :]) * (1 - m[:-1, :, :]) + ( |
|
Ib[:-1, :, :] - Ib[1:, :, :]) * m[:-1, :, :] |
|
gy[:, :-1, :] = (Ia[:, :-1, :] - Ia[:, 1:, :]) * (1 - m[:, :-1, :]) + ( |
|
Ib[:, :-1, :] - Ib[:, 1:, :]) * m[:, :-1, :] |
|
|
|
|
|
crt_states = (h, w, grad_weight) |
|
if As is None or crt_states != prev_states: |
|
As = construct_A(*crt_states) |
|
prev_states = crt_states |
|
|
|
final = [] |
|
for i in range(3): |
|
weight = grad_weight[i] |
|
im_dx = np.clip(gx[:, :, i].reshape(h * w, 1), -100, 100) |
|
im_dy = np.clip(gy[:, :, i].reshape(h * w, 1), -100, 100) |
|
im = Iab[:, :, i].reshape(h * w, 1) |
|
im_mean = im.mean() |
|
im = im - im_mean |
|
A = As[i] |
|
b = np.vstack([im_dx * weight, im_dy * weight, im]) |
|
out = scipy.sparse.linalg.lsqr(A, b) |
|
out_im = (out[0] + im_mean).reshape(h, w, 1) |
|
final += [out_im] |
|
|
|
final = np.clip(np.concatenate(final, axis=2), 0, 255) |
|
return cv2.cvtColor(final.astype(np.uint8), cv2.COLOR_LAB2BGR) |
|
|