BRIA-RMBG-2.0 / mask_app.py
svjack's picture
Upload mask_app.py
47f51f0 verified
import os
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
#import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import numpy as np
from PIL import Image
# 检查 CUDA 是否可用
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
output_folder = 'output_images'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 定义颜色列表,每个颜色对应一个 mask
colors = [
'#000000', # 背景色
'#2692F3', # 蓝色
'#F89E12', # 橙色
'#16C232', # 绿色
'#F92F6C', # 粉色
'#AC6AEB', # 紫色
]
# 将颜色转换为 RGB 值
palette = np.array([
tuple(int(s[i + 1:i + 3], 16) for i in (0, 2, 4))
for s in colors[1:] # 跳过背景色
]) # (N, 3)
def fn(image, mask_color):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
image, mask = process(im, mask_color)
image_path = os.path.join(output_folder, "no_bg_image.png")
mask_path = os.path.join(output_folder, "mask_image.png")
image.save(image_path)
mask.save(mask_path)
return (image, origin), image_path, mask
#@spaces.GPU
def process(image, mask_color):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to(device)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
# 创建一个新的透明背景图像
transparent_image = Image.new("RGBA", image_size, (0, 0, 0, 0))
transparent_image.paste(image, (0, 0), mask)
# 创建一个带有颜色的 mask 图像
mask_color_rgb = tuple(int(mask_color[i + 1:i + 3], 16) for i in (0, 2, 4))
colored_mask = Image.new("RGBA", image_size, mask_color_rgb + (255,))
colored_mask.putalpha(mask)
return transparent_image, colored_mask
# 示例数据
example_image = "giraffe.jpg" # 确保该文件存在于当前目录
example_url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"
# 定义 Gradio 组件
with gr.Blocks() as demo:
gr.Markdown("# 🖼️ RMBG-2.0 for Background Removal")
with gr.Row():
# 左侧列:输入
with gr.Column():
gr.Markdown("## Input")
image_input = gr.Image(label="Upload an image")
text_input = gr.Textbox(label="Paste an image URL")
color_input = gr.Dropdown(label="Mask Color", choices=colors[1:], value=colors[1])
run_button = gr.Button("Run")
# 右侧列:输出
with gr.Column():
gr.Markdown("## Output")
slider_output = ImageSlider(label="RMBG-2.0", type="pil")
file_output = gr.File(label="Output PNG File")
mask_output = gr.Image(label="Mask Image")
# 示例数据
gr.Examples(
examples=[[example_image, colors[1]], [example_url, colors[1]]],
inputs=[image_input, color_input],
outputs=[slider_output, file_output, mask_output], # 添加 outputs 参数
fn=fn,
cache_examples=True
)
# 绑定事件
run_button.click(
fn=fn,
inputs=[image_input, color_input],
outputs=[slider_output, file_output, mask_output]
)
if __name__ == "__main__":
demo.launch(share=True, show_error=True)