File size: 9,701 Bytes
02fde7e 422e946 02fde7e f81df75 02fde7e e9f8d41 02fde7e 422e946 e25b5dd 3484514 838a5f0 422e946 02fde7e d0d47f8 02fde7e 422e946 02fde7e 0b41e7e f07bac5 0b41e7e f07bac5 0b41e7e f07bac5 0b41e7e f07bac5 0b41e7e e306ff9 422e946 796bd91 e25b5dd 422e946 e25b5dd 4843304 e25b5dd 422e946 e25b5dd 422e946 e25b5dd 422e946 e25b5dd 796bd91 422e946 e25b5dd 422e946 e25b5dd 796bd91 422e946 e25b5dd e306ff9 f07bac5 e306ff9 59248ff e25b5dd 41ade47 796bd91 e25b5dd 422e946 838a5f0 02fde7e 422e946 e25b5dd ac839ac e306ff9 0927b89 ac839ac f81df75 02fde7e c290545 e306ff9 5832d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import re
import dateutil.parser
import numpy as np
import time
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LogMetric(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
# Constant regex to get timestrings
timestamp_regex = r'^\s*(\d{4}[-/.]\d{2}[-/.]\d{2}(?:[ T]\d{2}[:]\d{2}(?:[:]\d{2}(?:[.,]\d+)?)?(?:Z|[+-]\d{2}[:]\d{2})?)?)\s*'
timestamp_pattern = re.compile(timestamp_regex, re.MULTILINE)
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
# Both prediction and reference are strings
features=datasets.Features({
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
# Jaccard Similarity to measure closeness of two log-messages
def get_jaccard_similarity(self, set1, set2):
intersection = set1.intersection(set2)
union = set1.union(set2)
return len(intersection) / len(union)
# A score depending on the difference in length of two sentences
def get_length_score(self, sentence1, sentence2):
s1len = len(sentence1)
s2len = len(sentence2)
return 1 - (abs(s1len - s2len) / max(s1len, s2len))
# Combine a weighted average of different scores
def get_overall_similarity(self, sentence1, sentence2):
s1split = sentence1.split()
s2split = sentence2.split()
jaccard_score = self.get_jaccard_similarity(set(s1split), set(s2split))
length_score = self.get_length_score(s1split, s2split)
return (jaccard_score * 0.7 + length_score * 0.3) * 100.0
def getLogMetric(self, pred : str, ref : str):
ref = ref.strip(' \t\n\r')
pred = pred.strip(' \t\n\r')
# Split log on timestamps
pred_split_log = self.timestamp_pattern.split(pred)
ref_split_log = self.timestamp_pattern.split(ref)
# This should alwas hold (safety feature)
# TODO: remove this after testing
assert(len(pred_split_log) % 2 == len(ref_split_log) % 2 == 1)
# One logentry always consists of timestamp + log-message
pred_logentries = []
ref_logentries = []
# reorganize log into logentry-tuples, consisting of timestamp + log-message
for i in range(1, len(pred_split_log), 2):
pred_logentries.append((pred_split_log[i],pred_split_log[i+1]))
for i in range(1, len(ref_split_log), 2):
ref_logentries.append((ref_split_log[i],ref_split_log[i+1]))
# The number of logentries of the reference/prediction which has more/less entries/timestamps
max_logentries = max(len(pred_logentries), len(ref_logentries))
min_logentries = min(len(pred_logentries), len(ref_logentries))
# Case there are no timestamps in reference and none in prediction
# we can compute bleu directly from original prediction (ref will be empty, but we offload this to the bleu metric)
if (len(pred_logentries) == 0 and len(ref_logentries) == 0):
# TODO: remove this later, for testing purposes only
assert(pred == "")
# any sensible log reference is empty if there is no timestamp, hence it suffices to check exact match
logmsg_score = 100.0 if pred == ref else 0.0
return 0.3 * 100.0 + 0.7 * logmsg_score
# Case one has 0 timestamps, other has >0 timestamps
if (len(pred_logentries) == 0 or len(ref_logentries) == 0):
# It is nonsensical to compare something in this case
return 0.0
# replace all digits in the reference timestamp (first timestamp) with '/d' to get
# a regex that describes the format
pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(pred_logentries[0][0]))
matchesPatternScore = 100.0
monotonicallyIncreasingScore = 100.0
# A variable to save the previous timestamp (as datetime obj) to check monotonicity
prev_datetime = None
# Convert matches to datetime objects
# TODO TODO TODO fix this:
for i in range(min_logentries):
ts = pred_logentries[i][0]
try:
# Check if the format matches with the format of the first timestamp
# TODO!! Check this later, maybe it is too restricting for training a llm
matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
# Check if the timestamps are monotonically increasing
cur_datetime = dateutil.parser.parse(ts)
monotonicallyIncreasing = True if prev_datetime == None else prev_datetime <= cur_datetime
prev_datetime = cur_datetime
# If one entry doesn't fulfill the matching pattern property or the monotinicity property, set to 0 for whole log
matchesPatternScore = 0.0 if (not matchesPattern) else matchesPatternScore
monotonicallyIncreasingScore = 0.0 if (not monotonicallyIncreasing) else monotonicallyIncreasingScore
except Exception as e:
# e.g. date format not parsable by dateutil.parser
matchesPatternScore = 0.0
monotonicallyIncreasingScore = 0.0
# apply jaccard-similarity to every pred-ref pair and then take mean score * 100
local_score = np.mean([self.get_overall_similarity(p, r) for p,r in
zip(
list(map(lambda t: t[1], pred_logentries))[:min_logentries],
list(map(lambda t: t[1], ref_logentries))[:min_logentries]
)])
# we aggregate the bleu scores where we weight the difference in logentries with a score of 0
logmessage_aggregated_score = ((min_logentries / max_logentries) * local_score)
# return weighted overall score of all the different scores
return 0.2 * monotonicallyIncreasingScore + 0.1 * matchesPatternScore + 0.7 * logmessage_aggregated_score
def _compute(self, predictions, references):
"""Returns the scores"""
# TODO: get separate log entries (split before timestamps), replace timestamps with token and compare the log entry with BLEU
t_before_logmetric = time.perf_counter()
timestamp_score = np.mean([self.getLogMetric(p,r) for p,r in zip(predictions,references)])
t_after_logmetric = time.perf_counter()
logmetric_duration = f" {t_after_logmetric - t_before_logmetric:0.10f}"
return {
"score": timestamp_score,
"duration": logmetric_duration
}
|