import gradio as gr from transformers import pipeline import warnings import logging warnings.simplefilter('ignore') logging.disable(logging.WARNING) model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment" def predict(image): cap = pipeline('image-to-text') genereated_dict = cap(image) final = str(genereated_dict) def sentiment_analysis(phrase): pipe = pipeline('text-classification') sentiment = pipe(phrase) return str(senti) senti = sentiment_analysis(final) output = final[20:-2] return output input = gr.inputs.Image( label="Upload your Image and wait for 8-12 seconds!", type='pil', optional=False) output = gr.outputs.Textbox(label="Captions") title = "Content ModX UI " interface = gr.Interface( fn=predict, inputs=input, theme="grass", outputs= output, title=title, ) interface.launch()