suresh-subramanian's picture
Update app.py
4ae9a9b
raw
history blame
942 Bytes
import transformers
import gradio as gr
import datasets
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
dataset = datasets.load_dataset('beans')
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
labels = dataset['train'].features['labels'].names
def classify(im):
features = feature_extractor(im, return_tensors='pt')
with torch.no_grad():
logits = model(features["pixel_values"])[-1]
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
return confidences
# Set gradio interface
gr_interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean Classification', description='Monitor your crops health in easier way')
# Launch gradio
gr_interface.launch()