Spaces:
Sleeping
Sleeping
File size: 15,849 Bytes
6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 814b935 f2fe0c9 814b935 f2fe0c9 814b935 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 112a5ac 6005655 112a5ac 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 6005655 f2fe0c9 112a5ac 6005655 f2fe0c9 112a5ac f2fe0c9 112a5ac f2fe0c9 112a5ac f2fe0c9 112a5ac f2fe0c9 112a5ac f2fe0c9 112a5ac 6005655 f2fe0c9 112a5ac 6005655 f2fe0c9 6005655 f2fe0c9 6005655 112a5ac f2fe0c9 112a5ac 6005655 f2fe0c9 112a5ac f2fe0c9 6005655 f2fe0c9 6005655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
{
"cells": [
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-26T16:28:29.519384Z",
"start_time": "2024-10-26T16:28:29.506673Z"
}
},
"cell_type": "code",
"source": [
"from fake_headers import Headers\n",
"\n",
"headers = Headers(headers=True).generate()\n",
"headers"
],
"id": "c60b4d771c2e0a21",
"outputs": [
{
"data": {
"text/plain": [
"{'Accept': '*/*',\n",
" 'Connection': 'keep-alive',\n",
" 'User-Agent': 'Mozilla/5.0 (X11; Linux i686 on x86_64; rv:60.3.0) Gecko/20100101 Firefox/60.3.0',\n",
" 'Accept-Language': 'en-US;q=0.5,en;q=0.3',\n",
" 'DNT': '1',\n",
" 'Referer': 'https://google.com'}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 1
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-26T16:28:29.719882Z",
"start_time": "2024-10-26T16:28:29.531148Z"
}
},
"cell_type": "code",
"source": [
"from selenium.webdriver.chrome.options import Options\n",
"from selenium import webdriver\n",
"from selenium.webdriver.support.ui import WebDriverWait\n",
"from selenium.webdriver.support import expected_conditions as EC\n",
"from selenium.webdriver.common.by import By\n",
"from bs4 import BeautifulSoup\n",
"import time\n",
"\n",
"\n",
"def scroll_and_wait(driver, scroll_pause_time=2):\n",
" \"\"\"\n",
" Scroll the page gradually and wait for images to load\n",
" \"\"\"\n",
" # Get scroll height\n",
" last_height = driver.execute_script(\"return document.body.scrollHeight\")\n",
"\n",
" while True:\n",
" # Scroll down gradually\n",
" for i in range(10):\n",
" driver.execute_script(f\"window.scrollTo(0, {(i + 1) * (last_height / 10)});\")\n",
" time.sleep(0.5) # Short pause between each scroll step\n",
"\n",
" # Wait for new images to load\n",
" time.sleep(scroll_pause_time)\n",
"\n",
" # Calculate new scroll height and compare with last scroll height\n",
" new_height = driver.execute_script(\"return document.body.scrollHeight\")\n",
" if new_height == last_height:\n",
" break\n",
" last_height = new_height\n",
"\n",
"\n",
"def wait_for_images(driver, timeout=10):\n",
" \"\"\"\n",
" Wait for images to load and become visible\n",
" \"\"\"\n",
" try:\n",
" # Wait for all image elements to be present\n",
" WebDriverWait(driver, timeout).until(\n",
" EC.presence_of_all_elements_located((By.TAG_NAME, \"img\"))\n",
" )\n",
"\n",
" # Get all image elements\n",
" images = driver.find_elements(By.TAG_NAME, \"img\")\n",
"\n",
" # Wait for images to load\n",
" for img in images:\n",
" try:\n",
" WebDriverWait(driver, 2).until(\n",
" lambda d: img.get_attribute('complete') == 'true' and\n",
" img.get_attribute('naturalHeight') != '0'\n",
" )\n",
" except:\n",
" continue # Skip images that don't load within timeout\n",
"\n",
" except Exception as e:\n",
" print(f\"Warning: Not all images could be loaded: {e}\")"
],
"id": "11933d956e20b6b8",
"outputs": [],
"execution_count": 2
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-26T16:29:00.452959Z",
"start_time": "2024-10-26T16:28:29.721884Z"
}
},
"cell_type": "code",
"source": [
"chrome_options = Options()\n",
"# chrome_options.add_argument(\"--headless\")\n",
"# chrome_options.add_argument(\"--disable-gpu\")\n",
"# chrome_options.add_argument(\"--no-sandbox\")\n",
"# chrome_options.add_argument(\"--disable-dev-shm-usage\")\n",
"\n",
"# Add fake headers\n",
"for key, value in headers.items():\n",
" chrome_options.add_argument(f'--{key.lower()}={value}')\n",
"\n",
"# Additional configurations to appear more human-like\n",
"chrome_options.add_argument(\"--disable-blink-features=AutomationControlled\")\n",
"chrome_options.add_argument(\"--window-size=1920,1080\")\n",
"\n",
"# Enable images in headless mode\n",
"chrome_options.add_argument(\"--force-device-scale-factor=1\")\n",
"chrome_options.add_argument(\"--high-dpi-support=1\")\n",
"\n",
"# Privacy and fingerprinting prevention\n",
"chrome_options.add_argument(\"--disable-blink-features\")\n",
"chrome_options.add_argument(\"--disable-infobars\")\n",
"chrome_options.add_experimental_option(\"excludeSwitches\", [\"enable-automation\"])\n",
"chrome_options.add_experimental_option(\"useAutomationExtension\", False)\n",
"\n",
"# Enable JavaScript\n",
"chrome_options.add_argument(\"--enable-javascript\")\n",
"\n",
"driver = webdriver.Chrome(options=chrome_options)\n",
"\n",
"driver.execute_cdp_cmd(\"Page.addScriptToEvaluateOnNewDocument\", {\n",
" \"source\": \"\"\"\n",
" Object.defineProperty(navigator, 'webdriver', {\n",
" get: () => undefined\n",
" })\n",
" \"\"\"\n",
"})\n",
"\n",
"products_url = \"https://www.target.com/s?searchTerm=Peach&tref=typeahead%7Cterm%7CPeach%7C%7C%7Chistory\"\n",
"driver.get(products_url)\n",
"\n",
"time.sleep(3)\n",
"\n",
"# Scroll and wait for content\n",
"scroll_and_wait(driver)\n",
"\n",
"# Wait for images to load\n",
"wait_for_images(driver)\n",
"\n",
"time.sleep(2)\n",
"\n",
"soup = BeautifulSoup(driver.page_source, \"html.parser\")\n",
"driver.quit()"
],
"id": "ac14cff825f0887f",
"outputs": [],
"execution_count": 3
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-26T16:54:58.190620Z",
"start_time": "2024-10-26T16:54:58.165031Z"
}
},
"cell_type": "code",
"source": [
"from urllib.parse import urljoin\n",
"import json\n",
"from collections import Counter\n",
"\n",
"\n",
"def get_element_signature(element):\n",
" \"\"\"\n",
" Create a signature for an element based on its structure.\n",
" \"\"\"\n",
" signature = {\n",
" 'tag': element.name,\n",
" 'classes': tuple(sorted(element.get('class', []))),\n",
" 'child_tags': tuple(sorted(child.name for child in element.find_all(recursive=False) if child.name)),\n",
" 'has_image': bool(element.find('img')),\n",
" 'has_price': bool(any(c in element.get_text() for c in '$€£¥')),\n",
" 'has_link': bool(element.find('a')),\n",
" }\n",
" return str(signature)\n",
"\n",
"\n",
"def analyze_children_similarity(element):\n",
" \"\"\"\n",
" Analyze how similar the direct children of an element are.\n",
" \"\"\"\n",
" if not element.contents:\n",
" return 0, 0\n",
"\n",
" # Get signatures for all direct children that are elements (have a tag name)\n",
" child_signatures = [\n",
" get_element_signature(child)\n",
" for child in element.find_all(recursive=False)\n",
" if child.name\n",
" ]\n",
"\n",
" if not child_signatures:\n",
" return 0, 0\n",
"\n",
" # Count how many times each signature appears and get the most common one\n",
" signature_counts = Counter(child_signatures)\n",
" most_common_sig, most_common_count = signature_counts.most_common(1)[0]\n",
" similarity_score = most_common_count / len(child_signatures)\n",
"\n",
" return similarity_score, most_common_count\n",
"\n",
"\n",
"def count_images_in_element(element):\n",
" \"\"\"\n",
" Count all images within an element, including nested ones.\n",
" \"\"\"\n",
" return len(element.find_all('img', recursive=True))\n",
"\n",
"\n",
"def get_element_identifier(element):\n",
" \"\"\"\n",
" Create a unique identifier for an element including tag and classes.\n",
" \"\"\"\n",
" identifier = element.name\n",
" if element.get('class'):\n",
" identifier += f\" .{' .'.join(element['class'])}\"\n",
" if element.get('id'):\n",
" identifier += f\" #{element['id']}\"\n",
" return identifier\n",
"\n",
"\n",
"def convert_relative_urls(soup, base_url):\n",
" \"\"\"\n",
" Convert all relative URLs in the soup object to absolute URLs.\n",
" \"\"\"\n",
" for tag in soup.find_all(href=True):\n",
" tag['href'] = urljoin(base_url, tag['href'])\n",
" for tag in soup.find_all(src=True):\n",
" tag['src'] = urljoin(base_url, tag['src'])\n",
" for tag in soup.find_all(attrs={'data-src': True}):\n",
" tag['data-src'] = urljoin(base_url, tag['data-src'])\n",
" return soup\n",
"\n",
"\n",
"def find_image_rich_parents(soup, base_url, min_children=4, min_similarity=0.7):\n",
" \"\"\"\n",
" Find elements containing images and return both sorted list and detailed top element info.\n",
" \"\"\"\n",
" # Convert relative URLs to absolute\n",
" soup = convert_relative_urls(soup, base_url)\n",
"\n",
" # Collect potential container elements with their scores\n",
" elements_with_scores = []\n",
" for element in soup.find_all():\n",
" if element.name in ['div', 'ul', 'section', 'main']:\n",
" similarity_score, similar_children_count = analyze_children_similarity(element)\n",
" image_count = count_images_in_element(element)\n",
"\n",
" if similar_children_count >= min_children and similarity_score >= min_similarity and image_count > 0:\n",
" # Calculate combined score based on similarity and image count\n",
" combined_score = (similarity_score * similar_children_count * image_count)\n",
" elements_with_scores.append((element, image_count, combined_score))\n",
"\n",
" if not elements_with_scores:\n",
" return [], {\"error\": \"No elements with images found\"}, \"\"\n",
"\n",
" # Sort by combined score\n",
" elements_with_scores.sort(key=lambda x: x[2], reverse=True)\n",
"\n",
" # Process elements for sorted list output\n",
" sorted_elements = []\n",
" for element, image_count, _ in elements_with_scores:\n",
" sorted_elements.append((get_element_identifier(element), image_count))\n",
"\n",
" # Get top element (one with highest combined score)\n",
" top_element = elements_with_scores[0][0]\n",
"\n",
" # Separate child elements with images\n",
" products = []\n",
" for child in top_element.find_all(recursive=False):\n",
" if child.name: # Skip text nodes\n",
" product_info = {\n",
" \"html_content\": str(child),\n",
" \"images\": []\n",
" }\n",
"\n",
" # Get all images within this product\n",
" for img in child.find_all('img', recursive=True):\n",
" image_info = {\n",
" \"src\": img.get('src', 'No source'),\n",
" \"alt\": img.get('alt', 'No alt text')\n",
" }\n",
" product_info[\"images\"].append(image_info)\n",
"\n",
" products.append(product_info)\n",
"\n",
" print(len(products))\n",
"\n",
" # Create result dictionary for top element \n",
" top_element_info = {\n",
" \"parent\": {\n",
" \"tag\": top_element.name,\n",
" \"identifier\": get_element_identifier(top_element),\n",
" \"classes\": top_element.get('class', []),\n",
" \"id\": top_element.get('id', None)\n",
" },\n",
" \"products_count\": len(products),\n",
" \"products\": products\n",
" }\n",
"\n",
" # Create styled HTML output\n",
" style_tag = \"\"\"\n",
" <style>\n",
" div {\n",
" width: auto !important;\n",
" height: auto !important;\n",
" }\n",
" \n",
" img {\n",
" width: 300px;\n",
" height: 300px;\n",
" object-fit: contain;\n",
" }\n",
" \n",
" svg {\n",
" max-height: 10px;\n",
" max-width: 10px;\n",
" }\n",
" </style>\n",
" \"\"\"\n",
" html_output = style_tag + str(top_element)\n",
"\n",
" return sorted_elements, json.dumps(top_element_info, indent=2), html_output\n",
"\n",
"\n",
"def print_results(element_list):\n",
" \"\"\"\n",
" Print formatted results.\n",
" \"\"\"\n",
" print(\"\\nElements Containing Most Images (Lowest Level for Each Count):\")\n",
" print(\"-\" * 70)\n",
" print(\"Rank Element Tag & Classes Image Count\")\n",
" print(\"-\" * 70)\n",
"\n",
" for rank, element in enumerate(element_list, 1):\n",
" tag_info, count = element\n",
" rank_str = f\"{rank}.\"\n",
" rank_str = rank_str.ljust(5)\n",
" tag_info_padded = tag_info.ljust(45)\n",
" print(f\"{rank_str} {tag_info_padded} {count}\")"
],
"id": "3830f2e224e84798",
"outputs": [],
"execution_count": 11
},
{
"metadata": {},
"cell_type": "markdown",
"source": "",
"id": "80fa7f140d4da0a2"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-26T16:55:03.174631Z",
"start_time": "2024-10-26T16:55:02.976453Z"
}
},
"cell_type": "code",
"source": [
"base_url = products_url.rsplit('/', 1)[0]\n",
"sorted_elements, top_element_info, html_output = find_image_rich_parents(soup, base_url)\n",
"\n",
"# Print sorted list\n",
"print_results(sorted_elements)\n",
"\n",
"with open(\"output1.json\", \"w\") as file:\n",
" file.write(top_element_info)\n",
"\n",
"with open(\"output1.html\", \"w\") as file:\n",
" file.write(html_output)"
],
"id": "20b0b8cd238de02d",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"28\n",
"\n",
"Elements Containing Most Images (Lowest Level for Each Count):\n",
"----------------------------------------------------------------------\n",
"Rank Element Tag & Classes Image Count\n",
"----------------------------------------------------------------------\n",
"1. div .sc-5da3fdcc-0 .cqdDWw 51\n",
"2. div 1\n"
]
}
],
"execution_count": 12
},
{
"metadata": {},
"cell_type": "markdown",
"source": "",
"id": "1465ddb6bce2981c"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|