# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.data import YOLOConcatDataset, build_grounding, build_yolo_dataset from ultralytics.data.utils import check_det_dataset from ultralytics.models.yolo.world import WorldTrainer from ultralytics.utils import DEFAULT_CFG from ultralytics.utils.torch_utils import de_parallel class WorldTrainerFromScratch(WorldTrainer): """ A class extending the WorldTrainer class for training a world model from scratch on open-set dataset. Example: ```python from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch from ultralytics import YOLOWorld data = dict( train=dict( yolo_data=["Objects365.yaml"], grounding_data=[ dict( img_path="../datasets/flickr30k/images", json_file="../datasets/flickr30k/final_flickr_separateGT_train.json", ), dict( img_path="../datasets/GQA/images", json_file="../datasets/GQA/final_mixed_train_no_coco.json", ), ], ), val=dict(yolo_data=["lvis.yaml"]), ) model = YOLOWorld("yolov8s-worldv2.yaml") model.train(data=data, trainer=WorldTrainerFromScratch) ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize a WorldTrainer object with given arguments.""" if overrides is None: overrides = {} super().__init__(cfg, overrides, _callbacks) def build_dataset(self, img_path, mode="train", batch=None): """ Build YOLO Dataset. Args: img_path (List[str] | str): Path to the folder containing images. mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. batch (int, optional): Size of batches, this is for `rect`. Defaults to None. """ gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) if mode != "train": return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs) dataset = [ build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True) if isinstance(im_path, str) else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs) for im_path in img_path ] return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0] def get_dataset(self): """ Get train, val path from data dict if it exists. Returns None if data format is not recognized. """ final_data = {} data_yaml = self.args.data assert data_yaml.get("train", False), "train dataset not found" # object365.yaml assert data_yaml.get("val", False), "validation dataset not found" # lvis.yaml data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()} assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}." val_split = "minival" if "lvis" in data["val"][0]["val"] else "val" for d in data["val"]: if d.get("minival") is None: # for lvis dataset continue d["minival"] = str(d["path"] / d["minival"]) for s in ["train", "val"]: final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]] # save grounding data if there's one grounding_data = data_yaml[s].get("grounding_data") if grounding_data is None: continue grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data] for g in grounding_data: assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}" final_data[s] += grounding_data # NOTE: to make training work properly, set `nc` and `names` final_data["nc"] = data["val"][0]["nc"] final_data["names"] = data["val"][0]["names"] self.data = final_data return final_data["train"], final_data["val"][0] def plot_training_labels(self): """DO NOT plot labels.""" pass def final_eval(self): """Performs final evaluation and validation for object detection YOLO-World model.""" val = self.args.data["val"]["yolo_data"][0] self.validator.args.data = val self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val" return super().final_eval()