sunsmarterjieleaf commited on
Commit
47f08cd
·
verified ·
1 Parent(s): 44a8425

Delete examples

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. examples/README.md +0 -40
  2. examples/RTDETR-ONNXRuntime-Python/README.md +0 -43
  3. examples/RTDETR-ONNXRuntime-Python/main.py +0 -222
  4. examples/YOLO-Series-ONNXRuntime-Rust/Cargo.toml +0 -14
  5. examples/YOLO-Series-ONNXRuntime-Rust/README.md +0 -94
  6. examples/YOLO-Series-ONNXRuntime-Rust/src/main.rs +0 -236
  7. examples/YOLOv8-Action-Recognition/action_recognition.py +0 -464
  8. examples/YOLOv8-Action-Recognition/readme.md +0 -116
  9. examples/YOLOv8-Action-Recognition/requirements.txt +0 -4
  10. examples/YOLOv8-CPP-Inference/CMakeLists.txt +0 -28
  11. examples/YOLOv8-CPP-Inference/README.md +0 -50
  12. examples/YOLOv8-CPP-Inference/inference.cpp +0 -185
  13. examples/YOLOv8-CPP-Inference/inference.h +0 -52
  14. examples/YOLOv8-CPP-Inference/main.cpp +0 -70
  15. examples/YOLOv8-LibTorch-CPP-Inference/CMakeLists.txt +0 -47
  16. examples/YOLOv8-LibTorch-CPP-Inference/README.md +0 -35
  17. examples/YOLOv8-LibTorch-CPP-Inference/main.cc +0 -260
  18. examples/YOLOv8-ONNXRuntime-CPP/CMakeLists.txt +0 -99
  19. examples/YOLOv8-ONNXRuntime-CPP/README.md +0 -120
  20. examples/YOLOv8-ONNXRuntime-CPP/inference.cpp +0 -375
  21. examples/YOLOv8-ONNXRuntime-CPP/inference.h +0 -94
  22. examples/YOLOv8-ONNXRuntime-CPP/main.cpp +0 -193
  23. examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml +0 -24
  24. examples/YOLOv8-ONNXRuntime-Rust/README.md +0 -212
  25. examples/YOLOv8-ONNXRuntime-Rust/src/cli.rs +0 -87
  26. examples/YOLOv8-ONNXRuntime-Rust/src/lib.rs +0 -160
  27. examples/YOLOv8-ONNXRuntime-Rust/src/main.rs +0 -28
  28. examples/YOLOv8-ONNXRuntime-Rust/src/model.rs +0 -651
  29. examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs +0 -553
  30. examples/YOLOv8-ONNXRuntime-Rust/src/yolo_result.rs +0 -235
  31. examples/YOLOv8-ONNXRuntime/README.md +0 -43
  32. examples/YOLOv8-ONNXRuntime/main.py +0 -229
  33. examples/YOLOv8-OpenCV-ONNX-Python/README.md +0 -19
  34. examples/YOLOv8-OpenCV-ONNX-Python/main.py +0 -130
  35. examples/YOLOv8-OpenVINO-CPP-Inference/CMakeLists.txt +0 -21
  36. examples/YOLOv8-OpenVINO-CPP-Inference/README.md +0 -69
  37. examples/YOLOv8-OpenVINO-CPP-Inference/inference.cc +0 -175
  38. examples/YOLOv8-OpenVINO-CPP-Inference/inference.h +0 -59
  39. examples/YOLOv8-OpenVINO-CPP-Inference/main.cc +0 -41
  40. examples/YOLOv8-Region-Counter/readme.md +0 -128
  41. examples/YOLOv8-Region-Counter/yolov8_region_counter.py +0 -253
  42. examples/YOLOv8-SAHI-Inference-Video/readme.md +0 -69
  43. examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py +0 -108
  44. examples/YOLOv8-Segmentation-ONNXRuntime-Python/README.md +0 -63
  45. examples/YOLOv8-Segmentation-ONNXRuntime-Python/main.py +0 -338
  46. examples/YOLOv8-TFLite-Python/README.md +0 -55
  47. examples/YOLOv8-TFLite-Python/main.py +0 -221
  48. examples/heatmaps.ipynb +0 -186
  49. examples/hub.ipynb +0 -115
  50. examples/object_counting.ipynb +0 -200
examples/README.md DELETED
@@ -1,40 +0,0 @@
1
- ## Ultralytics Examples
2
-
3
- This directory features a collection of real-world applications and walkthroughs, provided as either Python files or notebooks. Explore the examples below to see how YOLO can be integrated into various applications.
4
-
5
- ### Ultralytics YOLO Example Applications
6
-
7
- | Title | Format | Contributor |
8
- | ----------------------------------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------- |
9
- | [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) |
10
- | [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python) | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
11
- | [YOLO C# ONNX-Runtime](https://github.com/dme-compunet/YoloSharp) | .NET/ONNX-Runtime | [Compunet](https://github.com/dme-compunet) |
12
- | [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
13
- | [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python | [Lakshantha](https://github.com/lakshanthad) |
14
- | [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
15
- | [RTDETR ONNXRuntime Python](./RTDETR-ONNXRuntime-Python) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
16
- | [YOLOv8 ONNXRuntime CPP](./YOLOv8-ONNXRuntime-CPP) | C++/ONNXRuntime | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) |
17
- | [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs) | C#/ONNX | [Kayzwer](https://github.com/Kayzwer) |
18
- | [YOLOv8 SAHI Video Inference](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
19
- | [YOLOv8 Region Counter](https://github.com/RizwanMunawar/ultralytics/blob/main/examples/YOLOv8-Region-Counter/yolov8_region_counter.py) | Python | [Muhammad Rizwan Munawar](https://github.com/RizwanMunawar) |
20
- | [YOLOv8 Segmentation ONNXRuntime Python](./YOLOv8-Segmentation-ONNXRuntime-Python) | Python/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
21
- | [YOLOv8 LibTorch CPP](./YOLOv8-LibTorch-CPP-Inference) | C++/LibTorch | [Myyura](https://github.com/Myyura) |
22
- | [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-TFLite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
23
- | [YOLOv8 All Tasks ONNXRuntime Rust](./YOLOv8-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
24
- | [YOLOv8 OpenVINO CPP](./YOLOv8-OpenVINO-CPP-Inference) | C++/OpenVINO | [Erlangga Yudi Pradana](https://github.com/rlggyp) |
25
- | [YOLOv5-YOLO11 ONNXRuntime Rust](./YOLO-Series-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
26
-
27
- ### How to Contribute
28
-
29
- We greatly appreciate contributions from the community, including examples, applications, and guides. If you'd like to contribute, please follow these guidelines:
30
-
31
- 1. **Create a pull request (PR)** with the title prefix `[Example]`, adding your new example folder to the `examples/` directory within the repository.
32
- 2. **Ensure your project adheres to the following standards:**
33
- - Makes use of the `ultralytics` package.
34
- - Includes a `README.md` with clear instructions for setting up and running the example.
35
- - Avoids adding large files or dependencies unless they are absolutely necessary for the example.
36
- - Contributors should be willing to provide support for their examples and address related issues.
37
-
38
- For more detailed information and guidance on contributing, please visit our [contribution documentation](https://docs.ultralytics.com/help/contributing/).
39
-
40
- If you encounter any questions or concerns regarding these guidelines, feel free to open a PR or an issue in the repository, and we will assist you in the contribution process.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/RTDETR-ONNXRuntime-Python/README.md DELETED
@@ -1,43 +0,0 @@
1
- # RTDETR - ONNX Runtime
2
-
3
- This project implements RTDETR using ONNX Runtime.
4
-
5
- ## Installation
6
-
7
- To run this project, you need to install the required dependencies. The following instructions will guide you through the installation process.
8
-
9
- ### Installing Required Dependencies
10
-
11
- You can install the required dependencies by running the following command:
12
-
13
- ```bash
14
- pip install -r requirements.txt
15
- ```
16
-
17
- ### Installing `onnxruntime-gpu`
18
-
19
- If you have an NVIDIA GPU and want to leverage GPU acceleration, you can install the onnxruntime-gpu package using the following command:
20
-
21
- ```bash
22
- pip install onnxruntime-gpu
23
- ```
24
-
25
- Note: Make sure you have the appropriate GPU drivers installed on your system.
26
-
27
- ### Installing `onnxruntime` (CPU version)
28
-
29
- If you don't have an NVIDIA GPU or prefer to use the CPU version of onnxruntime, you can install the onnxruntime package using the following command:
30
-
31
- ```bash
32
- pip install onnxruntime
33
- ```
34
-
35
- ### Usage
36
-
37
- After successfully installing the required packages, you can run the RTDETR implementation using the following command:
38
-
39
- ```bash
40
- python main.py --model rtdetr-l.onnx --img image.jpg --conf-thres 0.5 --iou-thres 0.5
41
- ```
42
-
43
- Make sure to replace rtdetr-l.onnx with the path to your RTDETR ONNX model file, image.jpg with the path to your input image, and adjust the confidence threshold (conf-thres) and IoU threshold (iou-thres) values as needed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/RTDETR-ONNXRuntime-Python/main.py DELETED
@@ -1,222 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
-
5
- import cv2
6
- import numpy as np
7
- import onnxruntime as ort
8
- import torch
9
-
10
- from ultralytics.utils import ASSETS, yaml_load
11
- from ultralytics.utils.checks import check_requirements, check_yaml
12
-
13
-
14
- class RTDETR:
15
- """RTDETR object detection model class for handling inference and visualization."""
16
-
17
- def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5):
18
- """
19
- Initializes the RTDETR object with the specified parameters.
20
-
21
- Args:
22
- model_path: Path to the ONNX model file.
23
- img_path: Path to the input image.
24
- conf_thres: Confidence threshold for object detection.
25
- iou_thres: IoU threshold for non-maximum suppression
26
- """
27
- self.model_path = model_path
28
- self.img_path = img_path
29
- self.conf_thres = conf_thres
30
- self.iou_thres = iou_thres
31
-
32
- # Set up the ONNX runtime session with CUDA and CPU execution providers
33
- self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
34
- self.model_input = self.session.get_inputs()
35
- self.input_width = self.model_input[0].shape[2]
36
- self.input_height = self.model_input[0].shape[3]
37
-
38
- # Load class names from the COCO dataset YAML file
39
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
40
-
41
- # Generate a color palette for drawing bounding boxes
42
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
43
-
44
- def draw_detections(self, box, score, class_id):
45
- """
46
- Draws bounding boxes and labels on the input image based on the detected objects.
47
-
48
- Args:
49
- box: Detected bounding box.
50
- score: Corresponding detection score.
51
- class_id: Class ID for the detected object.
52
-
53
- Returns:
54
- None
55
- """
56
- # Extract the coordinates of the bounding box
57
- x1, y1, x2, y2 = box
58
-
59
- # Retrieve the color for the class ID
60
- color = self.color_palette[class_id]
61
-
62
- # Draw the bounding box on the image
63
- cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
64
-
65
- # Create the label text with class name and score
66
- label = f"{self.classes[class_id]}: {score:.2f}"
67
-
68
- # Calculate the dimensions of the label text
69
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
70
-
71
- # Calculate the position of the label text
72
- label_x = x1
73
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
74
-
75
- # Draw a filled rectangle as the background for the label text
76
- cv2.rectangle(
77
- self.img,
78
- (int(label_x), int(label_y - label_height)),
79
- (int(label_x + label_width), int(label_y + label_height)),
80
- color,
81
- cv2.FILLED,
82
- )
83
-
84
- # Draw the label text on the image
85
- cv2.putText(
86
- self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA
87
- )
88
-
89
- def preprocess(self):
90
- """
91
- Preprocesses the input image before performing inference.
92
-
93
- Returns:
94
- image_data: Preprocessed image data ready for inference.
95
- """
96
- # Read the input image using OpenCV
97
- self.img = cv2.imread(self.img_path)
98
-
99
- # Get the height and width of the input image
100
- self.img_height, self.img_width = self.img.shape[:2]
101
-
102
- # Convert the image color space from BGR to RGB
103
- img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
104
-
105
- # Resize the image to match the input shape
106
- img = cv2.resize(img, (self.input_width, self.input_height))
107
-
108
- # Normalize the image data by dividing it by 255.0
109
- image_data = np.array(img) / 255.0
110
-
111
- # Transpose the image to have the channel dimension as the first dimension
112
- image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
113
-
114
- # Expand the dimensions of the image data to match the expected input shape
115
- image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
116
-
117
- # Return the preprocessed image data
118
- return image_data
119
-
120
- def bbox_cxcywh_to_xyxy(self, boxes):
121
- """
122
- Converts bounding boxes from (center x, center y, width, height) format to (x_min, y_min, x_max, y_max) format.
123
-
124
- Args:
125
- boxes (numpy.ndarray): An array of shape (N, 4) where each row represents
126
- a bounding box in (cx, cy, w, h) format.
127
-
128
- Returns:
129
- numpy.ndarray: An array of shape (N, 4) where each row represents
130
- a bounding box in (x_min, y_min, x_max, y_max) format.
131
- """
132
- # Calculate half width and half height of the bounding boxes
133
- half_width = boxes[:, 2] / 2
134
- half_height = boxes[:, 3] / 2
135
-
136
- # Calculate the coordinates of the bounding boxes
137
- x_min = boxes[:, 0] - half_width
138
- y_min = boxes[:, 1] - half_height
139
- x_max = boxes[:, 0] + half_width
140
- y_max = boxes[:, 1] + half_height
141
-
142
- # Return the bounding boxes in (x_min, y_min, x_max, y_max) format
143
- return np.column_stack((x_min, y_min, x_max, y_max))
144
-
145
- def postprocess(self, model_output):
146
- """
147
- Postprocesses the model output to extract detections and draw them on the input image.
148
-
149
- Args:
150
- model_output: Output of the model inference.
151
-
152
- Returns:
153
- np.array: Annotated image with detections.
154
- """
155
- # Squeeze the model output to remove unnecessary dimensions
156
- outputs = np.squeeze(model_output[0])
157
-
158
- # Extract bounding boxes and scores from the model output
159
- boxes = outputs[:, :4]
160
- scores = outputs[:, 4:]
161
-
162
- # Get the class labels and scores for each detection
163
- labels = np.argmax(scores, axis=1)
164
- scores = np.max(scores, axis=1)
165
-
166
- # Apply confidence threshold to filter out low-confidence detections
167
- mask = scores > self.conf_thres
168
- boxes, scores, labels = boxes[mask], scores[mask], labels[mask]
169
-
170
- # Convert bounding boxes to (x_min, y_min, x_max, y_max) format
171
- boxes = self.bbox_cxcywh_to_xyxy(boxes)
172
-
173
- # Scale bounding boxes to match the original image dimensions
174
- boxes[:, 0::2] *= self.img_width
175
- boxes[:, 1::2] *= self.img_height
176
-
177
- # Draw detections on the image
178
- for box, score, label in zip(boxes, scores, labels):
179
- self.draw_detections(box, score, label)
180
-
181
- # Return the annotated image
182
- return self.img
183
-
184
- def main(self):
185
- """
186
- Executes the detection on the input image using the ONNX model.
187
-
188
- Returns:
189
- np.array: Output image with annotations.
190
- """
191
- # Preprocess the image for model input
192
- image_data = self.preprocess()
193
-
194
- # Run the model inference
195
- model_output = self.session.run(None, {self.model_input[0].name: image_data})
196
-
197
- # Process and return the model output
198
- return self.postprocess(model_output)
199
-
200
-
201
- if __name__ == "__main__":
202
- # Set up argument parser for command-line arguments
203
- parser = argparse.ArgumentParser()
204
- parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
205
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
206
- parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
207
- parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
208
- args = parser.parse_args()
209
-
210
- # Check for dependencies and set up ONNX runtime
211
- check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
212
-
213
- # Create the detector instance with specified parameters
214
- detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)
215
-
216
- # Perform detection and get the output image
217
- output_image = detection.main()
218
-
219
- # Display the annotated output image
220
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
221
- cv2.imshow("Output", output_image)
222
- cv2.waitKey(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLO-Series-ONNXRuntime-Rust/Cargo.toml DELETED
@@ -1,14 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- [package]
4
- name = "YOLO-ONNXRuntime-Rust"
5
- version = "0.1.0"
6
- edition = "2021"
7
- authors = ["Jamjamjon <[email protected]>"]
8
-
9
- [dependencies]
10
- anyhow = "1.0.92"
11
- clap = "4.5.20"
12
- tracing = "0.1.40"
13
- tracing-subscriber = "0.3.18"
14
- usls = { version = "0.0.19", features = ["auto"] }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLO-Series-ONNXRuntime-Rust/README.md DELETED
@@ -1,94 +0,0 @@
1
- # YOLO-Series ONNXRuntime Rust Demo for Core YOLO Tasks
2
-
3
- This repository provides a Rust demo for key YOLO-Series tasks such as `Classification`, `Segmentation`, `Detection`, `Pose Detection`, and `OBB` using ONNXRuntime. It supports various YOLO models (v5 - 11) across multiple vision tasks.
4
-
5
- ## Introduction
6
-
7
- - This example leverages the latest versions of both ONNXRuntime and YOLO models.
8
- - We utilize the [usls](https://github.com/jamjamjon/usls/tree/main) crate to streamline YOLO model inference, providing efficient data loading, visualization, and optimized inference performance.
9
-
10
- ## Features
11
-
12
- - **Extensive Model Compatibility**: Supports `YOLOv5`, `YOLOv6`, `YOLOv7`, `YOLOv8`, `YOLOv9`, `YOLOv10`, `YOLO11`, `YOLO-world`, `RTDETR`, and others, covering a wide range of YOLO versions.
13
- - **Versatile Task Coverage**: Includes `Classification`, `Segmentation`, `Detection`, `Pose`, and `OBB`.
14
- - **Precision Flexibility**: Works with `FP16` and `FP32` ONNX models.
15
- - **Execution Providers**: Accelerated support for `CPU`, `CUDA`, `CoreML`, and `TensorRT`.
16
- - **Dynamic Input Shapes**: Dynamically adjusts to variable `batch`, `width`, and `height` dimensions for flexible model input.
17
- - **Flexible Data Loading**: The `DataLoader` handles images, folders, videos, and video streams.
18
- - **Real-Time Display and Video Export**: `Viewer` provides real-time frame visualization and video export functions, similar to OpenCV’s `imshow()` and `imwrite()`.
19
- - **Enhanced Annotation and Visualization**: The `Annotator` facilitates comprehensive result rendering, with support for bounding boxes (HBB), oriented bounding boxes (OBB), polygons, masks, keypoints, and text labels.
20
-
21
- ## Setup Instructions
22
-
23
- ### 1. ONNXRuntime Linking
24
-
25
- <details>
26
- <summary>You have two options to link the ONNXRuntime library:</summary>
27
-
28
- - **Option 1: Manual Linking**
29
-
30
- - For detailed setup, consult the [ONNX Runtime linking documentation](https://ort.pyke.io/setup/linking).
31
- - **Linux or macOS**:
32
- 1. Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases).
33
- 2. Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable:
34
- ```shell
35
- export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0
36
- ```
37
-
38
- - **Option 2: Automatic Download**
39
- - Use the `--features auto` flag to handle downloading automatically:
40
- ```shell
41
- cargo run -r --example yolo --features auto
42
- ```
43
-
44
- </details>
45
-
46
- ### 2. \[Optional\] Install CUDA, CuDNN, and TensorRT
47
-
48
- - The CUDA execution provider requires CUDA version `12.x`.
49
- - The TensorRT execution provider requires both CUDA `12.x` and TensorRT `10.x`.
50
-
51
- ### 3. \[Optional\] Install ffmpeg
52
-
53
- To view video frames and save video inferences, install `rust-ffmpeg`. For instructions, see:
54
- [https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies](https://github.com/zmwangx/rust-ffmpeg/wiki/Notes-on-building#dependencies)
55
-
56
- ## Get Started
57
-
58
- ```Shell
59
- # customized
60
- cargo run -r -- --task detect --ver v8 --nc 6 --model xxx.onnx # YOLOv8
61
-
62
- # Classify
63
- cargo run -r -- --task classify --ver v5 --scale s --width 224 --height 224 --nc 1000 # YOLOv5
64
- cargo run -r -- --task classify --ver v8 --scale n --width 224 --height 224 --nc 1000 # YOLOv8
65
- cargo run -r -- --task classify --ver v11 --scale n --width 224 --height 224 --nc 1000 # YOLO11
66
-
67
- # Detect
68
- cargo run -r -- --task detect --ver v5 --scale n # YOLOv5
69
- cargo run -r -- --task detect --ver v6 --scale n # YOLOv6
70
- cargo run -r -- --task detect --ver v7 --scale t # YOLOv7
71
- cargo run -r -- --task detect --ver v8 --scale n # YOLOv8
72
- cargo run -r -- --task detect --ver v9 --scale t # YOLOv9
73
- cargo run -r -- --task detect --ver v10 --scale n # YOLOv10
74
- cargo run -r -- --task detect --ver v11 --scale n # YOLO11
75
- cargo run -r -- --task detect --ver rtdetr --scale l # RTDETR
76
-
77
- # Pose
78
- cargo run -r -- --task pose --ver v8 --scale n # YOLOv8-Pose
79
- cargo run -r -- --task pose --ver v11 --scale n # YOLO11-Pose
80
-
81
- # Segment
82
- cargo run -r -- --task segment --ver v5 --scale n # YOLOv5-Segment
83
- cargo run -r -- --task segment --ver v8 --scale n # YOLOv8-Segment
84
- cargo run -r -- --task segment --ver v11 --scale n # YOLOv8-Segment
85
- cargo run -r -- --task segment --ver v8 --model yolo/FastSAM-s-dyn-f16.onnx # FastSAM
86
-
87
- # OBB
88
- cargo run -r -- --ver v8 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLOv8-Obb
89
- cargo run -r -- --ver v11 --task obb --scale n --width 1024 --height 1024 --source images/dota.png # YOLO11-Obb
90
- ```
91
-
92
- **`cargo run -- --help` for more options**
93
-
94
- For more details, please refer to [usls-yolo](https://github.com/jamjamjon/usls/tree/main/examples/yolo).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLO-Series-ONNXRuntime-Rust/src/main.rs DELETED
@@ -1,236 +0,0 @@
1
- use anyhow::Result;
2
- use clap::Parser;
3
-
4
- use usls::{
5
- models::YOLO, Annotator, DataLoader, Device, Options, Viewer, Vision, YOLOScale, YOLOTask,
6
- YOLOVersion, COCO_SKELETONS_16,
7
- };
8
-
9
- #[derive(Parser, Clone)]
10
- #[command(author, version, about, long_about = None)]
11
- pub struct Args {
12
- /// Path to the ONNX model
13
- #[arg(long)]
14
- pub model: Option<String>,
15
-
16
- /// Input source path
17
- #[arg(long, default_value_t = String::from("../../ultralytics/assets/bus.jpg"))]
18
- pub source: String,
19
-
20
- /// YOLO Task
21
- #[arg(long, value_enum, default_value_t = YOLOTask::Detect)]
22
- pub task: YOLOTask,
23
-
24
- /// YOLO Version
25
- #[arg(long, value_enum, default_value_t = YOLOVersion::V8)]
26
- pub ver: YOLOVersion,
27
-
28
- /// YOLO Scale
29
- #[arg(long, value_enum, default_value_t = YOLOScale::N)]
30
- pub scale: YOLOScale,
31
-
32
- /// Batch size
33
- #[arg(long, default_value_t = 1)]
34
- pub batch_size: usize,
35
-
36
- /// Minimum input width
37
- #[arg(long, default_value_t = 224)]
38
- pub width_min: isize,
39
-
40
- /// Input width
41
- #[arg(long, default_value_t = 640)]
42
- pub width: isize,
43
-
44
- /// Maximum input width
45
- #[arg(long, default_value_t = 1024)]
46
- pub width_max: isize,
47
-
48
- /// Minimum input height
49
- #[arg(long, default_value_t = 224)]
50
- pub height_min: isize,
51
-
52
- /// Input height
53
- #[arg(long, default_value_t = 640)]
54
- pub height: isize,
55
-
56
- /// Maximum input height
57
- #[arg(long, default_value_t = 1024)]
58
- pub height_max: isize,
59
-
60
- /// Number of classes
61
- #[arg(long, default_value_t = 80)]
62
- pub nc: usize,
63
-
64
- /// Class confidence
65
- #[arg(long)]
66
- pub confs: Vec<f32>,
67
-
68
- /// Enable TensorRT support
69
- #[arg(long)]
70
- pub trt: bool,
71
-
72
- /// Enable CUDA support
73
- #[arg(long)]
74
- pub cuda: bool,
75
-
76
- /// Enable CoreML support
77
- #[arg(long)]
78
- pub coreml: bool,
79
-
80
- /// Use TensorRT half precision
81
- #[arg(long)]
82
- pub half: bool,
83
-
84
- /// Device ID to use
85
- #[arg(long, default_value_t = 0)]
86
- pub device_id: usize,
87
-
88
- /// Enable performance profiling
89
- #[arg(long)]
90
- pub profile: bool,
91
-
92
- /// Disable contour drawing, for saving time
93
- #[arg(long)]
94
- pub no_contours: bool,
95
-
96
- /// Show result
97
- #[arg(long)]
98
- pub view: bool,
99
-
100
- /// Do not save output
101
- #[arg(long)]
102
- pub nosave: bool,
103
- }
104
-
105
- fn main() -> Result<()> {
106
- let args = Args::parse();
107
-
108
- // logger
109
- if args.profile {
110
- tracing_subscriber::fmt()
111
- .with_max_level(tracing::Level::INFO)
112
- .init();
113
- }
114
-
115
- // model path
116
- let path = match &args.model {
117
- None => format!(
118
- "yolo/{}-{}-{}.onnx",
119
- args.ver.name(),
120
- args.scale.name(),
121
- args.task.name()
122
- ),
123
- Some(x) => x.to_string(),
124
- };
125
-
126
- // saveout
127
- let saveout = match &args.model {
128
- None => format!(
129
- "{}-{}-{}",
130
- args.ver.name(),
131
- args.scale.name(),
132
- args.task.name()
133
- ),
134
- Some(x) => {
135
- let p = std::path::PathBuf::from(&x);
136
- p.file_stem().unwrap().to_str().unwrap().to_string()
137
- }
138
- };
139
-
140
- // device
141
- let device = if args.cuda {
142
- Device::Cuda(args.device_id)
143
- } else if args.trt {
144
- Device::Trt(args.device_id)
145
- } else if args.coreml {
146
- Device::CoreML(args.device_id)
147
- } else {
148
- Device::Cpu(args.device_id)
149
- };
150
-
151
- // build options
152
- let options = Options::new()
153
- .with_model(&path)?
154
- .with_yolo_version(args.ver)
155
- .with_yolo_task(args.task)
156
- .with_device(device)
157
- .with_trt_fp16(args.half)
158
- .with_ixx(0, 0, (1, args.batch_size as _, 4).into())
159
- .with_ixx(0, 2, (args.height_min, args.height, args.height_max).into())
160
- .with_ixx(0, 3, (args.width_min, args.width, args.width_max).into())
161
- .with_confs(if args.confs.is_empty() {
162
- &[0.2, 0.15]
163
- } else {
164
- &args.confs
165
- })
166
- .with_nc(args.nc)
167
- .with_find_contours(!args.no_contours) // find contours or not
168
- // .with_names(&COCO_CLASS_NAMES_80) // detection class names
169
- // .with_names2(&COCO_KEYPOINTS_17) // keypoints class names
170
- // .exclude_classes(&[0])
171
- // .retain_classes(&[0, 5])
172
- .with_profile(args.profile);
173
-
174
- // build model
175
- let mut model = YOLO::new(options)?;
176
-
177
- // build dataloader
178
- let dl = DataLoader::new(&args.source)?
179
- .with_batch(model.batch() as _)
180
- .build()?;
181
-
182
- // build annotator
183
- let annotator = Annotator::default()
184
- .with_skeletons(&COCO_SKELETONS_16)
185
- .without_masks(true) // no masks plotting when doing segment task
186
- .with_bboxes_thickness(3)
187
- .with_keypoints_name(false) // enable keypoints names
188
- .with_saveout_subs(&["YOLO"])
189
- .with_saveout(&saveout);
190
-
191
- // build viewer
192
- let mut viewer = if args.view {
193
- Some(Viewer::new().with_delay(5).with_scale(1.).resizable(true))
194
- } else {
195
- None
196
- };
197
-
198
- // run & annotate
199
- for (xs, _paths) in dl {
200
- let ys = model.forward(&xs, args.profile)?;
201
- let images_plotted = annotator.plot(&xs, &ys, !args.nosave)?;
202
-
203
- // show image
204
- match &mut viewer {
205
- Some(viewer) => viewer.imshow(&images_plotted)?,
206
- None => continue,
207
- }
208
-
209
- // check out window and key event
210
- match &mut viewer {
211
- Some(viewer) => {
212
- if !viewer.is_open() || viewer.is_key_pressed(usls::Key::Escape) {
213
- break;
214
- }
215
- }
216
- None => continue,
217
- }
218
-
219
- // write video
220
- if !args.nosave {
221
- match &mut viewer {
222
- Some(viewer) => viewer.write_batch(&images_plotted)?,
223
- None => continue,
224
- }
225
- }
226
- }
227
-
228
- // finish video write
229
- if !args.nosave {
230
- if let Some(viewer) = &mut viewer {
231
- viewer.finish_write()?;
232
- }
233
- }
234
-
235
- Ok(())
236
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Action-Recognition/action_recognition.py DELETED
@@ -1,464 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
- import time
5
- from collections import defaultdict
6
- from typing import List, Optional, Tuple
7
- from urllib.parse import urlparse
8
-
9
- import cv2
10
- import numpy as np
11
- import torch
12
- from transformers import AutoModel, AutoProcessor
13
-
14
- from ultralytics import YOLO
15
- from ultralytics.data.loaders import get_best_youtube_url
16
- from ultralytics.utils.plotting import Annotator
17
- from ultralytics.utils.torch_utils import select_device
18
-
19
-
20
- class TorchVisionVideoClassifier:
21
- """Classifies videos using pretrained TorchVision models; see https://pytorch.org/vision/stable/."""
22
-
23
- from torchvision.models.video import (
24
- MViT_V1_B_Weights,
25
- MViT_V2_S_Weights,
26
- R3D_18_Weights,
27
- S3D_Weights,
28
- Swin3D_B_Weights,
29
- Swin3D_T_Weights,
30
- mvit_v1_b,
31
- mvit_v2_s,
32
- r3d_18,
33
- s3d,
34
- swin3d_b,
35
- swin3d_t,
36
- )
37
-
38
- model_name_to_model_and_weights = {
39
- "s3d": (s3d, S3D_Weights.DEFAULT),
40
- "r3d_18": (r3d_18, R3D_18_Weights.DEFAULT),
41
- "swin3d_t": (swin3d_t, Swin3D_T_Weights.DEFAULT),
42
- "swin3d_b": (swin3d_b, Swin3D_B_Weights.DEFAULT),
43
- "mvit_v1_b": (mvit_v1_b, MViT_V1_B_Weights.DEFAULT),
44
- "mvit_v2_s": (mvit_v2_s, MViT_V2_S_Weights.DEFAULT),
45
- }
46
-
47
- def __init__(self, model_name: str, device: str or torch.device = ""):
48
- """
49
- Initialize the VideoClassifier with the specified model name and device.
50
-
51
- Args:
52
- model_name (str): The name of the model to use.
53
- device (str or torch.device, optional): The device to run the model on. Defaults to "".
54
-
55
- Raises:
56
- ValueError: If an invalid model name is provided.
57
- """
58
- if model_name not in self.model_name_to_model_and_weights:
59
- raise ValueError(f"Invalid model name '{model_name}'. Available models: {self.available_model_names()}")
60
- model, self.weights = self.model_name_to_model_and_weights[model_name]
61
- self.device = select_device(device)
62
- self.model = model(weights=self.weights).to(self.device).eval()
63
-
64
- @staticmethod
65
- def available_model_names() -> List[str]:
66
- """
67
- Get the list of available model names.
68
-
69
- Returns:
70
- list: List of available model names.
71
- """
72
- return list(TorchVisionVideoClassifier.model_name_to_model_and_weights.keys())
73
-
74
- def preprocess_crops_for_video_cls(self, crops: List[np.ndarray], input_size: list = None) -> torch.Tensor:
75
- """
76
- Preprocess a list of crops for video classification.
77
-
78
- Args:
79
- crops (List[np.ndarray]): List of crops to preprocess. Each crop should have dimensions (H, W, C)
80
- input_size (tuple, optional): The target input size for the model. Defaults to (224, 224).
81
-
82
- Returns:
83
- torch.Tensor: Preprocessed crops as a tensor with dimensions (1, T, C, H, W).
84
- """
85
- if input_size is None:
86
- input_size = [224, 224]
87
- from torchvision.transforms import v2
88
-
89
- transform = v2.Compose(
90
- [
91
- v2.ToDtype(torch.float32, scale=True),
92
- v2.Resize(input_size, antialias=True),
93
- v2.Normalize(mean=self.weights.transforms().mean, std=self.weights.transforms().std),
94
- ]
95
- )
96
-
97
- processed_crops = [transform(torch.from_numpy(crop).permute(2, 0, 1)) for crop in crops]
98
- return torch.stack(processed_crops).unsqueeze(0).permute(0, 2, 1, 3, 4).to(self.device)
99
-
100
- def __call__(self, sequences: torch.Tensor):
101
- """
102
- Perform inference on the given sequences.
103
-
104
- Args:
105
- sequences (torch.Tensor): The input sequences for the model. The expected input dimensions are
106
- (B, T, C, H, W) for batched video frames or (T, C, H, W) for single video frames.
107
-
108
- Returns:
109
- torch.Tensor: The model's output.
110
- """
111
- with torch.inference_mode():
112
- return self.model(sequences)
113
-
114
- def postprocess(self, outputs: torch.Tensor) -> Tuple[List[str], List[float]]:
115
- """
116
- Postprocess the model's batch output.
117
-
118
- Args:
119
- outputs (torch.Tensor): The model's output.
120
-
121
- Returns:
122
- List[str]: The predicted labels.
123
- List[float]: The predicted confidences.
124
- """
125
- pred_labels = []
126
- pred_confs = []
127
- for output in outputs:
128
- pred_class = output.argmax(0).item()
129
- pred_label = self.weights.meta["categories"][pred_class]
130
- pred_labels.append(pred_label)
131
- pred_conf = output.softmax(0)[pred_class].item()
132
- pred_confs.append(pred_conf)
133
-
134
- return pred_labels, pred_confs
135
-
136
-
137
- class HuggingFaceVideoClassifier:
138
- """Zero-shot video classifier using Hugging Face models for various devices."""
139
-
140
- def __init__(
141
- self,
142
- labels: List[str],
143
- model_name: str = "microsoft/xclip-base-patch16-zero-shot",
144
- device: str or torch.device = "",
145
- fp16: bool = False,
146
- ):
147
- """
148
- Initialize the HuggingFaceVideoClassifier with the specified model name.
149
-
150
- Args:
151
- labels (List[str]): List of labels for zero-shot classification.
152
- model_name (str): The name of the model to use. Defaults to "microsoft/xclip-base-patch16-zero-shot".
153
- device (str or torch.device, optional): The device to run the model on. Defaults to "".
154
- fp16 (bool, optional): Whether to use FP16 for inference. Defaults to False.
155
- """
156
- self.fp16 = fp16
157
- self.labels = labels
158
- self.device = select_device(device)
159
- self.processor = AutoProcessor.from_pretrained(model_name)
160
- model = AutoModel.from_pretrained(model_name).to(self.device)
161
- if fp16:
162
- model = model.half()
163
- self.model = model.eval()
164
-
165
- def preprocess_crops_for_video_cls(self, crops: List[np.ndarray], input_size: list = None) -> torch.Tensor:
166
- """
167
- Preprocess a list of crops for video classification.
168
-
169
- Args:
170
- crops (List[np.ndarray]): List of crops to preprocess. Each crop should have dimensions (H, W, C)
171
- input_size (tuple, optional): The target input size for the model. Defaults to (224, 224).
172
-
173
- Returns:
174
- torch.Tensor: Preprocessed crops as a tensor (1, T, C, H, W).
175
- """
176
- if input_size is None:
177
- input_size = [224, 224]
178
- from torchvision import transforms
179
-
180
- transform = transforms.Compose(
181
- [
182
- transforms.Lambda(lambda x: x.float() / 255.0),
183
- transforms.Resize(input_size),
184
- transforms.Normalize(
185
- mean=self.processor.image_processor.image_mean, std=self.processor.image_processor.image_std
186
- ),
187
- ]
188
- )
189
-
190
- processed_crops = [transform(torch.from_numpy(crop).permute(2, 0, 1)) for crop in crops] # (T, C, H, W)
191
- output = torch.stack(processed_crops).unsqueeze(0).to(self.device) # (1, T, C, H, W)
192
- if self.fp16:
193
- output = output.half()
194
- return output
195
-
196
- def __call__(self, sequences: torch.Tensor) -> torch.Tensor:
197
- """
198
- Perform inference on the given sequences.
199
-
200
- Args:
201
- sequences (torch.Tensor): The input sequences for the model. Batched video frames with shape (B, T, H, W, C).
202
-
203
- Returns:
204
- torch.Tensor: The model's output.
205
- """
206
- input_ids = self.processor(text=self.labels, return_tensors="pt", padding=True)["input_ids"].to(self.device)
207
-
208
- inputs = {"pixel_values": sequences, "input_ids": input_ids}
209
-
210
- with torch.inference_mode():
211
- outputs = self.model(**inputs)
212
-
213
- return outputs.logits_per_video
214
-
215
- def postprocess(self, outputs: torch.Tensor) -> Tuple[List[List[str]], List[List[float]]]:
216
- """
217
- Postprocess the model's batch output.
218
-
219
- Args:
220
- outputs (torch.Tensor): The model's output.
221
-
222
- Returns:
223
- List[List[str]]: The predicted top3 labels.
224
- List[List[float]]: The predicted top3 confidences.
225
- """
226
- pred_labels = []
227
- pred_confs = []
228
-
229
- with torch.no_grad():
230
- logits_per_video = outputs # Assuming outputs is already the logits tensor
231
- probs = logits_per_video.softmax(dim=-1) # Use softmax to convert logits to probabilities
232
-
233
- for prob in probs:
234
- top2_indices = prob.topk(2).indices.tolist()
235
- top2_labels = [self.labels[idx] for idx in top2_indices]
236
- top2_confs = prob[top2_indices].tolist()
237
- pred_labels.append(top2_labels)
238
- pred_confs.append(top2_confs)
239
-
240
- return pred_labels, pred_confs
241
-
242
-
243
- def crop_and_pad(frame, box, margin_percent):
244
- """Crop box with margin and take square crop from frame."""
245
- x1, y1, x2, y2 = map(int, box)
246
- w, h = x2 - x1, y2 - y1
247
-
248
- # Add margin
249
- margin_x, margin_y = int(w * margin_percent / 100), int(h * margin_percent / 100)
250
- x1, y1 = max(0, x1 - margin_x), max(0, y1 - margin_y)
251
- x2, y2 = min(frame.shape[1], x2 + margin_x), min(frame.shape[0], y2 + margin_y)
252
-
253
- # Take square crop from frame
254
- size = max(y2 - y1, x2 - x1)
255
- center_y, center_x = (y1 + y2) // 2, (x1 + x2) // 2
256
- half_size = size // 2
257
- square_crop = frame[
258
- max(0, center_y - half_size) : min(frame.shape[0], center_y + half_size),
259
- max(0, center_x - half_size) : min(frame.shape[1], center_x + half_size),
260
- ]
261
-
262
- return cv2.resize(square_crop, (224, 224), interpolation=cv2.INTER_LINEAR)
263
-
264
-
265
- def run(
266
- weights: str = "yolo11n.pt",
267
- device: str = "",
268
- source: str = "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
269
- output_path: Optional[str] = None,
270
- crop_margin_percentage: int = 10,
271
- num_video_sequence_samples: int = 8,
272
- skip_frame: int = 2,
273
- video_cls_overlap_ratio: float = 0.25,
274
- fp16: bool = False,
275
- video_classifier_model: str = "microsoft/xclip-base-patch32",
276
- labels: List[str] = None,
277
- ) -> None:
278
- """
279
- Run action recognition on a video source using YOLO for object detection and a video classifier.
280
-
281
- Args:
282
- weights (str): Path to the YOLO model weights. Defaults to "yolo11n.pt".
283
- device (str): Device to run the model on. Use 'cuda' for NVIDIA GPU, 'mps' for Apple Silicon, or 'cpu'. Defaults to auto-detection.
284
- source (str): Path to mp4 video file or YouTube URL. Defaults to a sample YouTube video.
285
- output_path (Optional[str], optional): Path to save the output video. Defaults to None.
286
- crop_margin_percentage (int, optional): Percentage of margin to add around detected objects. Defaults to 10.
287
- num_video_sequence_samples (int, optional): Number of video frames to use for classification. Defaults to 8.
288
- skip_frame (int, optional): Number of frames to skip between detections. Defaults to 4.
289
- video_cls_overlap_ratio (float, optional): Overlap ratio between video sequences. Defaults to 0.25.
290
- fp16 (bool, optional): Whether to use half-precision floating point. Defaults to False.
291
- video_classifier_model (str, optional): Name or path of the video classifier model. Defaults to "microsoft/xclip-base-patch32".
292
- labels (List[str], optional): List of labels for zero-shot classification. Defaults to predefined list.
293
-
294
- Returns:
295
- None</edit>
296
- """
297
- if labels is None:
298
- labels = [
299
- "walking",
300
- "running",
301
- "brushing teeth",
302
- "looking into phone",
303
- "weight lifting",
304
- "cooking",
305
- "sitting",
306
- ]
307
- # Initialize models and device
308
- device = select_device(device)
309
- yolo_model = YOLO(weights).to(device)
310
- if video_classifier_model in TorchVisionVideoClassifier.available_model_names():
311
- print("'fp16' is not supported for TorchVisionVideoClassifier. Setting fp16 to False.")
312
- print(
313
- "'labels' is not used for TorchVisionVideoClassifier. Ignoring the provided labels and using Kinetics-400 labels."
314
- )
315
- video_classifier = TorchVisionVideoClassifier(video_classifier_model, device=device)
316
- else:
317
- video_classifier = HuggingFaceVideoClassifier(
318
- labels, model_name=video_classifier_model, device=device, fp16=fp16
319
- )
320
-
321
- # Initialize video capture
322
- if source.startswith("http") and urlparse(source).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}:
323
- source = get_best_youtube_url(source)
324
- elif not source.endswith(".mp4"):
325
- raise ValueError("Invalid source. Supported sources are YouTube URLs and MP4 files.")
326
- cap = cv2.VideoCapture(source)
327
-
328
- # Get video properties
329
- frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
330
- frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
331
- fps = cap.get(cv2.CAP_PROP_FPS)
332
-
333
- # Initialize VideoWriter
334
- if output_path is not None:
335
- fourcc = cv2.VideoWriter_fourcc(*"mp4v")
336
- out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
337
-
338
- # Initialize track history
339
- track_history = defaultdict(list)
340
- frame_counter = 0
341
-
342
- track_ids_to_infer = []
343
- crops_to_infer = []
344
- pred_labels = []
345
- pred_confs = []
346
-
347
- while cap.isOpened():
348
- success, frame = cap.read()
349
- if not success:
350
- break
351
-
352
- frame_counter += 1
353
-
354
- # Run YOLO tracking
355
- results = yolo_model.track(frame, persist=True, classes=[0]) # Track only person class
356
-
357
- if results[0].boxes.id is not None:
358
- boxes = results[0].boxes.xyxy.cpu().numpy()
359
- track_ids = results[0].boxes.id.cpu().numpy()
360
-
361
- # Visualize prediction
362
- annotator = Annotator(frame, line_width=3, font_size=10, pil=False)
363
-
364
- if frame_counter % skip_frame == 0:
365
- crops_to_infer = []
366
- track_ids_to_infer = []
367
-
368
- for box, track_id in zip(boxes, track_ids):
369
- if frame_counter % skip_frame == 0:
370
- crop = crop_and_pad(frame, box, crop_margin_percentage)
371
- track_history[track_id].append(crop)
372
-
373
- if len(track_history[track_id]) > num_video_sequence_samples:
374
- track_history[track_id].pop(0)
375
-
376
- if len(track_history[track_id]) == num_video_sequence_samples and frame_counter % skip_frame == 0:
377
- start_time = time.time()
378
- crops = video_classifier.preprocess_crops_for_video_cls(track_history[track_id])
379
- end_time = time.time()
380
- preprocess_time = end_time - start_time
381
- print(f"video cls preprocess time: {preprocess_time:.4f} seconds")
382
- crops_to_infer.append(crops)
383
- track_ids_to_infer.append(track_id)
384
-
385
- if crops_to_infer and (
386
- not pred_labels
387
- or frame_counter % int(num_video_sequence_samples * skip_frame * (1 - video_cls_overlap_ratio)) == 0
388
- ):
389
- crops_batch = torch.cat(crops_to_infer, dim=0)
390
-
391
- start_inference_time = time.time()
392
- output_batch = video_classifier(crops_batch)
393
- end_inference_time = time.time()
394
- inference_time = end_inference_time - start_inference_time
395
- print(f"video cls inference time: {inference_time:.4f} seconds")
396
-
397
- pred_labels, pred_confs = video_classifier.postprocess(output_batch)
398
-
399
- if track_ids_to_infer and crops_to_infer:
400
- for box, track_id, pred_label, pred_conf in zip(boxes, track_ids_to_infer, pred_labels, pred_confs):
401
- top2_preds = sorted(zip(pred_label, pred_conf), key=lambda x: x[1], reverse=True)
402
- label_text = " | ".join([f"{label} ({conf:.2f})" for label, conf in top2_preds])
403
- annotator.box_label(box, label_text, color=(0, 0, 255))
404
-
405
- # Write the annotated frame to the output video
406
- if output_path is not None:
407
- out.write(frame)
408
-
409
- # Display the annotated frame
410
- cv2.imshow("YOLOv8 Tracking with S3D Classification", frame)
411
-
412
- if cv2.waitKey(1) & 0xFF == ord("q"):
413
- break
414
-
415
- cap.release()
416
- if output_path is not None:
417
- out.release()
418
- cv2.destroyAllWindows()
419
-
420
-
421
- def parse_opt():
422
- """Parse command line arguments."""
423
- parser = argparse.ArgumentParser()
424
- parser.add_argument("--weights", type=str, default="yolo11n.pt", help="ultralytics detector model path")
425
- parser.add_argument("--device", default="", help='cuda device, i.e. 0 or 0,1,2,3 or cpu/mps, "" for auto-detection')
426
- parser.add_argument(
427
- "--source",
428
- type=str,
429
- default="https://www.youtube.com/watch?v=dQw4w9WgXcQ",
430
- help="video file path or youtube URL",
431
- )
432
- parser.add_argument("--output-path", type=str, default="output_video.mp4", help="output video file path")
433
- parser.add_argument(
434
- "--crop-margin-percentage", type=int, default=10, help="percentage of margin to add around detected objects"
435
- )
436
- parser.add_argument(
437
- "--num-video-sequence-samples", type=int, default=8, help="number of video frames to use for classification"
438
- )
439
- parser.add_argument("--skip-frame", type=int, default=2, help="number of frames to skip between detections")
440
- parser.add_argument(
441
- "--video-cls-overlap-ratio", type=float, default=0.25, help="overlap ratio between video sequences"
442
- )
443
- parser.add_argument("--fp16", action="store_true", help="use FP16 for inference")
444
- parser.add_argument(
445
- "--video-classifier-model", type=str, default="microsoft/xclip-base-patch32", help="video classifier model name"
446
- )
447
- parser.add_argument(
448
- "--labels",
449
- nargs="+",
450
- type=str,
451
- default=["dancing", "singing a song"],
452
- help="labels for zero-shot video classification",
453
- )
454
- return parser.parse_args()
455
-
456
-
457
- def main(opt):
458
- """Main function."""
459
- run(**vars(opt))
460
-
461
-
462
- if __name__ == "__main__":
463
- opt = parse_opt()
464
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Action-Recognition/readme.md DELETED
@@ -1,116 +0,0 @@
1
- # Zero-shot Action Recognition with YOLOv8 (Inference on Video)
2
-
3
- - Action recognition is a technique used to identify and classify actions performed by individuals in a video. This process enables more advanced analyses when multiple actions are considered. The actions can be detected and classified in real time.
4
- - The system can be customized to recognize specific actions based on the user's preferences and requirements.
5
-
6
- ## Table of Contents
7
-
8
- - [Step 1: Install the Required Libraries](#step-1-install-the-required-libraries)
9
- - [Step 2: Run the Action Recognition Using Ultralytics YOLOv8](#step-2-run-the-action-recognition-using-ultralytics-yolov8)
10
- - [Usage Options](#usage-options)
11
- - [FAQ](#faq)
12
-
13
- ## Step 1: Install the Required Libraries
14
-
15
- Clone the repository, install dependencies and `cd` to this local directory for commands in Step 2.
16
-
17
- ```bash
18
- # Clone ultralytics repo
19
- git clone https://github.com/ultralytics/ultralytics
20
-
21
- # cd to local directory
22
- cd examples/YOLOv8-Action-Recognition
23
-
24
- # Install dependencies
25
- pip install -U -r requirements.txt
26
- ```
27
-
28
- ## Step 2: Run the Action Recognition Using Ultralytics YOLOv8
29
-
30
- Here are the basic commands for running the inference:
31
-
32
- ### Note
33
-
34
- The action recognition model will automatically detect and track people in the video, and classify their actions based on the specified labels. The results will be displayed in real-time on the video output. You can customize the action labels by modifying the `--labels` argument when running the script.
35
-
36
- ```bash
37
- # Quick start
38
- python action_recognition.py
39
-
40
- # Basic usage
41
- python action_recognition.py --source "https://www.youtube.com/watch?v=dQw4w9WgXcQ" --labels "dancing" "singing a song"
42
-
43
- # Use local video file
44
- python action_recognition.py --source path/to/video.mp4
45
-
46
- # Better detector performance
47
- python action_recognition.py --weights yolov8m.pt
48
-
49
- # Run on CPU
50
- python action_recognition.py --device cpu
51
-
52
- # Use a different video classifier model
53
- python action_recognition.py --video-classifier-model "s3d"
54
-
55
- # Use FP16 for inference (only for HuggingFace models)
56
- python action_recognition.py --fp16
57
-
58
- # Export output as mp4
59
- python action_recognition.py --output-path output.mp4
60
-
61
- # Combine multiple options
62
- python action_recognition.py --source "https://www.youtube.com/watch?v=dQw4w9WgXcQ" --device 0 --video-classifier-model "microsoft/xclip-base-patch32" --labels "dancing" "singing a song" --fp16
63
- ```
64
-
65
- ## Usage Options
66
-
67
- - `--weights`: Path to the YOLO model weights (default: "yolov8n.pt")
68
- - `--device`: Cuda device, i.e. 0 or 0,1,2,3 or cpu (default: auto-detect)
69
- - `--source`: Video file path or YouTube URL (default: "[rickroll](https://www.youtube.com/watch?v=dQw4w9WgXcQ)")
70
- - `--output-path`: Output video file path
71
- - `--crop-margin-percentage`: Percentage of margin to add around detected objects (default: 10)
72
- - `--num-video-sequence-samples`: Number of video frames to use for classification (default: 8)
73
- - `--skip-frame`: Number of frames to skip between detections (default: 1)
74
- - `--video-cls-overlap-ratio`: Overlap ratio between video sequences (default: 0.25)
75
- - `--fp16`: Use FP16 for inference (only for HuggingFace models)
76
- - `--video-classifier-model`: Video classifier model name or path (default: "microsoft/xclip-base-patch32")
77
- - `--labels`: Labels for zero-shot video classification (default: \["dancing" "singing a song"\])
78
-
79
- ## FAQ
80
-
81
- **1. What Does Action Recognition Involve?**
82
-
83
- Action recognition is a computational method used to identify and classify actions or activities performed by individuals in recorded video or real-time streams. This technique is widely used in video analysis, surveillance, and human-computer interaction, enabling the detection and understanding of human behaviors based on their motion patterns and context.
84
-
85
- **2. Is Custom Action Labels Supported by the Action Recognition?**
86
-
87
- Yes, custom action labels are supported by the action recognition system. The `action_recognition.py` script allows users to specify their own custom labels for zero-shot video classification. This can be done using the `--labels` argument when running the script. For example:
88
-
89
- ```bash
90
- python action_recognition.py --source https://www.youtube.com/watch?v=dQw4w9WgXcQ --labels "dancing" "singing" "jumping"
91
- ```
92
-
93
- You can adjust these labels to match the specific actions you want to recognize in your video. The system will then attempt to classify the detected actions based on these custom labels.
94
-
95
- Additionally, you can choose between different video classification models:
96
-
97
- 1. For Hugging Face models, you can use any compatible video classification model. The default is set to:
98
-
99
- - "microsoft/xclip-base-patch32"
100
-
101
- 2. For TorchVision models (no support for zero-shot labels), you can select from the following options:
102
-
103
- - "s3d"
104
- - "r3d_18"
105
- - "swin3d_t"
106
- - "swin3d_b"
107
- - "mvit_v1_b"
108
- - "mvit_v2_s"
109
-
110
- **3. Why Combine Action Recognition with YOLOv8?**
111
-
112
- YOLOv8 specializes in the detection and tracking of objects in video streams. Action recognition complements this by enabling the identification and classification of actions performed by individuals, making it a valuable application of YOLOv8.
113
-
114
- **4. Can I Employ Other YOLO Versions?**
115
-
116
- Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Action-Recognition/requirements.txt DELETED
@@ -1,4 +0,0 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
-
3
- ultralytics
4
- transformers
 
 
 
 
 
examples/YOLOv8-CPP-Inference/CMakeLists.txt DELETED
@@ -1,28 +0,0 @@
1
- cmake_minimum_required(VERSION 3.5)
2
-
3
- project(Yolov8CPPInference VERSION 0.1)
4
-
5
- set(CMAKE_INCLUDE_CURRENT_DIR ON)
6
-
7
- # CUDA
8
- set(CUDA_TOOLKIT_ROOT_DIR "/usr/local/cuda")
9
- find_package(CUDA 11 REQUIRED)
10
-
11
- set(CMAKE_CUDA_STANDARD 11)
12
- set(CMAKE_CUDA_STANDARD_REQUIRED ON)
13
- # !CUDA
14
-
15
- # OpenCV
16
- find_package(OpenCV REQUIRED)
17
- include_directories(${OpenCV_INCLUDE_DIRS})
18
- # !OpenCV
19
-
20
- set(PROJECT_SOURCES
21
- main.cpp
22
-
23
- inference.h
24
- inference.cpp
25
- )
26
-
27
- add_executable(Yolov8CPPInference ${PROJECT_SOURCES})
28
- target_link_libraries(Yolov8CPPInference ${OpenCV_LIBS})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-CPP-Inference/README.md DELETED
@@ -1,50 +0,0 @@
1
- # YOLOv8/YOLOv5 Inference C++
2
-
3
- This example demonstrates how to perform inference using YOLOv8 and YOLOv5 models in C++ with OpenCV DNN API.
4
-
5
- ## Usage
6
-
7
- ```bash
8
- git clone ultralytics
9
- cd ultralytics
10
- pip install .
11
- cd examples/YOLOv8-CPP-Inference
12
-
13
- # Add a **yolov8\_.onnx** and/or **yolov5\_.onnx** model(s) to the ultralytics folder.
14
- # Edit the **main.cpp** to change the **projectBasePath** to match your user.
15
-
16
- # Note that by default the CMake file will try to import the CUDA library to be used with the OpenCVs dnn (cuDNN) GPU Inference.
17
- # If your OpenCV build does not use CUDA/cuDNN you can remove that import call and run the example on CPU.
18
-
19
- mkdir build
20
- cd build
21
- cmake ..
22
- make
23
- ./Yolov8CPPInference
24
- ```
25
-
26
- ## Exporting YOLOv8 and YOLOv5 Models
27
-
28
- To export YOLOv8 models:
29
-
30
- ```bash
31
- yolo export model=yolov8s.pt imgsz=480,640 format=onnx opset=12
32
- ```
33
-
34
- To export YOLOv5 models:
35
-
36
- ```bash
37
- python3 export.py --weights yolov5s.pt --img 480 640 --include onnx --opset 12
38
- ```
39
-
40
- yolov8s.onnx:
41
-
42
- ![image](https://user-images.githubusercontent.com/40023722/217356132-a4cecf2e-2729-4acb-b80a-6559022d7707.png)
43
-
44
- yolov5s.onnx:
45
-
46
- ![image](https://user-images.githubusercontent.com/40023722/217357005-07464492-d1da-42e3-98a7-fc753f87d5e6.png)
47
-
48
- This repository utilizes OpenCV DNN API to run ONNX exported models of YOLOv5 and YOLOv8. In theory, it should work for YOLOv6 and YOLOv7 as well, but they have not been tested. Note that the example networks are exported with rectangular (640x480) resolutions, but any exported resolution will work. You may want to use the letterbox approach for square images, depending on your use case.
49
-
50
- The **main** branch version uses Qt as a GUI wrapper. The primary focus here is the **Inference** class file, which demonstrates how to transpose YOLOv8 models to work as YOLOv5 models.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-CPP-Inference/inference.cpp DELETED
@@ -1,185 +0,0 @@
1
- #include "inference.h"
2
-
3
- Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda)
4
- {
5
- modelPath = onnxModelPath;
6
- modelShape = modelInputShape;
7
- classesPath = classesTxtFile;
8
- cudaEnabled = runWithCuda;
9
-
10
- loadOnnxNetwork();
11
- // loadClassesFromFile(); The classes are hard-coded for this example
12
- }
13
-
14
- std::vector<Detection> Inference::runInference(const cv::Mat &input)
15
- {
16
- cv::Mat modelInput = input;
17
- if (letterBoxForSquare && modelShape.width == modelShape.height)
18
- modelInput = formatToSquare(modelInput);
19
-
20
- cv::Mat blob;
21
- cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);
22
- net.setInput(blob);
23
-
24
- std::vector<cv::Mat> outputs;
25
- net.forward(outputs, net.getUnconnectedOutLayersNames());
26
-
27
- int rows = outputs[0].size[1];
28
- int dimensions = outputs[0].size[2];
29
-
30
- bool yolov8 = false;
31
- // yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])
32
- // yolov8 has an output of shape (batchSize, 84, 8400) (Num classes + box[x,y,w,h])
33
- if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8)
34
- {
35
- yolov8 = true;
36
- rows = outputs[0].size[2];
37
- dimensions = outputs[0].size[1];
38
-
39
- outputs[0] = outputs[0].reshape(1, dimensions);
40
- cv::transpose(outputs[0], outputs[0]);
41
- }
42
- float *data = (float *)outputs[0].data;
43
-
44
- float x_factor = modelInput.cols / modelShape.width;
45
- float y_factor = modelInput.rows / modelShape.height;
46
-
47
- std::vector<int> class_ids;
48
- std::vector<float> confidences;
49
- std::vector<cv::Rect> boxes;
50
-
51
- for (int i = 0; i < rows; ++i)
52
- {
53
- if (yolov8)
54
- {
55
- float *classes_scores = data+4;
56
-
57
- cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
58
- cv::Point class_id;
59
- double maxClassScore;
60
-
61
- minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
62
-
63
- if (maxClassScore > modelScoreThreshold)
64
- {
65
- confidences.push_back(maxClassScore);
66
- class_ids.push_back(class_id.x);
67
-
68
- float x = data[0];
69
- float y = data[1];
70
- float w = data[2];
71
- float h = data[3];
72
-
73
- int left = int((x - 0.5 * w) * x_factor);
74
- int top = int((y - 0.5 * h) * y_factor);
75
-
76
- int width = int(w * x_factor);
77
- int height = int(h * y_factor);
78
-
79
- boxes.push_back(cv::Rect(left, top, width, height));
80
- }
81
- }
82
- else // yolov5
83
- {
84
- float confidence = data[4];
85
-
86
- if (confidence >= modelConfidenceThreshold)
87
- {
88
- float *classes_scores = data+5;
89
-
90
- cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
91
- cv::Point class_id;
92
- double max_class_score;
93
-
94
- minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
95
-
96
- if (max_class_score > modelScoreThreshold)
97
- {
98
- confidences.push_back(confidence);
99
- class_ids.push_back(class_id.x);
100
-
101
- float x = data[0];
102
- float y = data[1];
103
- float w = data[2];
104
- float h = data[3];
105
-
106
- int left = int((x - 0.5 * w) * x_factor);
107
- int top = int((y - 0.5 * h) * y_factor);
108
-
109
- int width = int(w * x_factor);
110
- int height = int(h * y_factor);
111
-
112
- boxes.push_back(cv::Rect(left, top, width, height));
113
- }
114
- }
115
- }
116
-
117
- data += dimensions;
118
- }
119
-
120
- std::vector<int> nms_result;
121
- cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);
122
-
123
- std::vector<Detection> detections{};
124
- for (unsigned long i = 0; i < nms_result.size(); ++i)
125
- {
126
- int idx = nms_result[i];
127
-
128
- Detection result;
129
- result.class_id = class_ids[idx];
130
- result.confidence = confidences[idx];
131
-
132
- std::random_device rd;
133
- std::mt19937 gen(rd());
134
- std::uniform_int_distribution<int> dis(100, 255);
135
- result.color = cv::Scalar(dis(gen),
136
- dis(gen),
137
- dis(gen));
138
-
139
- result.className = classes[result.class_id];
140
- result.box = boxes[idx];
141
-
142
- detections.push_back(result);
143
- }
144
-
145
- return detections;
146
- }
147
-
148
- void Inference::loadClassesFromFile()
149
- {
150
- std::ifstream inputFile(classesPath);
151
- if (inputFile.is_open())
152
- {
153
- std::string classLine;
154
- while (std::getline(inputFile, classLine))
155
- classes.push_back(classLine);
156
- inputFile.close();
157
- }
158
- }
159
-
160
- void Inference::loadOnnxNetwork()
161
- {
162
- net = cv::dnn::readNetFromONNX(modelPath);
163
- if (cudaEnabled)
164
- {
165
- std::cout << "\nRunning on CUDA" << std::endl;
166
- net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
167
- net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
168
- }
169
- else
170
- {
171
- std::cout << "\nRunning on CPU" << std::endl;
172
- net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
173
- net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
174
- }
175
- }
176
-
177
- cv::Mat Inference::formatToSquare(const cv::Mat &source)
178
- {
179
- int col = source.cols;
180
- int row = source.rows;
181
- int _max = MAX(col, row);
182
- cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
183
- source.copyTo(result(cv::Rect(0, 0, col, row)));
184
- return result;
185
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-CPP-Inference/inference.h DELETED
@@ -1,52 +0,0 @@
1
- #ifndef INFERENCE_H
2
- #define INFERENCE_H
3
-
4
- // Cpp native
5
- #include <fstream>
6
- #include <vector>
7
- #include <string>
8
- #include <random>
9
-
10
- // OpenCV / DNN / Inference
11
- #include <opencv2/imgproc.hpp>
12
- #include <opencv2/opencv.hpp>
13
- #include <opencv2/dnn.hpp>
14
-
15
- struct Detection
16
- {
17
- int class_id{0};
18
- std::string className{};
19
- float confidence{0.0};
20
- cv::Scalar color{};
21
- cv::Rect box{};
22
- };
23
-
24
- class Inference
25
- {
26
- public:
27
- Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape = {640, 640}, const std::string &classesTxtFile = "", const bool &runWithCuda = true);
28
- std::vector<Detection> runInference(const cv::Mat &input);
29
-
30
- private:
31
- void loadClassesFromFile();
32
- void loadOnnxNetwork();
33
- cv::Mat formatToSquare(const cv::Mat &source);
34
-
35
- std::string modelPath{};
36
- std::string classesPath{};
37
- bool cudaEnabled{};
38
-
39
- std::vector<std::string> classes{"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};
40
-
41
- cv::Size2f modelShape{};
42
-
43
- float modelConfidenceThreshold {0.25};
44
- float modelScoreThreshold {0.45};
45
- float modelNMSThreshold {0.50};
46
-
47
- bool letterBoxForSquare = true;
48
-
49
- cv::dnn::Net net;
50
- };
51
-
52
- #endif // INFERENCE_H
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-CPP-Inference/main.cpp DELETED
@@ -1,70 +0,0 @@
1
- #include <iostream>
2
- #include <vector>
3
- #include <getopt.h>
4
-
5
- #include <opencv2/opencv.hpp>
6
-
7
- #include "inference.h"
8
-
9
- using namespace std;
10
- using namespace cv;
11
-
12
- int main(int argc, char **argv)
13
- {
14
- std::string projectBasePath = "/home/user/ultralytics"; // Set your ultralytics base path
15
-
16
- bool runOnGPU = true;
17
-
18
- //
19
- // Pass in either:
20
- //
21
- // "yolov8s.onnx" or "yolov5s.onnx"
22
- //
23
- // To run Inference with yolov8/yolov5 (ONNX)
24
- //
25
-
26
- // Note that in this example the classes are hard-coded and 'classes.txt' is a place holder.
27
- Inference inf(projectBasePath + "/yolov8s.onnx", cv::Size(640, 640), "classes.txt", runOnGPU);
28
-
29
- std::vector<std::string> imageNames;
30
- imageNames.push_back(projectBasePath + "/ultralytics/assets/bus.jpg");
31
- imageNames.push_back(projectBasePath + "/ultralytics/assets/zidane.jpg");
32
-
33
- for (int i = 0; i < imageNames.size(); ++i)
34
- {
35
- cv::Mat frame = cv::imread(imageNames[i]);
36
-
37
- // Inference starts here...
38
- std::vector<Detection> output = inf.runInference(frame);
39
-
40
- int detections = output.size();
41
- std::cout << "Number of detections:" << detections << std::endl;
42
-
43
- for (int i = 0; i < detections; ++i)
44
- {
45
- Detection detection = output[i];
46
-
47
- cv::Rect box = detection.box;
48
- cv::Scalar color = detection.color;
49
-
50
- // Detection box
51
- cv::rectangle(frame, box, color, 2);
52
-
53
- // Detection box text
54
- std::string classString = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4);
55
- cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
56
- cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
57
-
58
- cv::rectangle(frame, textBox, color, cv::FILLED);
59
- cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
60
- }
61
- // Inference ends here...
62
-
63
- // This is only for preview purposes
64
- float scale = 0.8;
65
- cv::resize(frame, frame, cv::Size(frame.cols*scale, frame.rows*scale));
66
- cv::imshow("Inference", frame);
67
-
68
- cv::waitKey(-1);
69
- }
70
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-LibTorch-CPP-Inference/CMakeLists.txt DELETED
@@ -1,47 +0,0 @@
1
- cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
2
-
3
- project(yolov8_libtorch_example)
4
-
5
- set(CMAKE_CXX_STANDARD 17)
6
- set(CMAKE_CXX_STANDARD_REQUIRED ON)
7
- set(CMAKE_CXX_EXTENSIONS OFF)
8
-
9
-
10
- # -------------- OpenCV --------------
11
- set(OpenCV_DIR "/path/to/opencv/lib/cmake/opencv4")
12
- find_package(OpenCV REQUIRED)
13
-
14
- message(STATUS "OpenCV library status:")
15
- message(STATUS " config: ${OpenCV_DIR}")
16
- message(STATUS " version: ${OpenCV_VERSION}")
17
- message(STATUS " libraries: ${OpenCV_LIBS}")
18
- message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
19
-
20
- include_directories(${OpenCV_INCLUDE_DIRS})
21
-
22
- # -------------- libtorch --------------
23
- list(APPEND CMAKE_PREFIX_PATH "/path/to/libtorch")
24
- set(Torch_DIR "/path/to/libtorch/share/cmake/Torch")
25
-
26
- find_package(Torch REQUIRED)
27
- set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
28
- message("${TORCH_LIBRARIES}")
29
- message("${TORCH_INCLUDE_DIRS}")
30
-
31
- # The following code block is suggested to be used on Windows.
32
- # According to https://github.com/pytorch/pytorch/issues/25457,
33
- # the DLLs need to be copied to avoid memory errors.
34
- # if (MSVC)
35
- # file(GLOB TORCH_DLLS "${TORCH_INSTALL_PREFIX}/lib/*.dll")
36
- # add_custom_command(TARGET yolov8_libtorch_example
37
- # POST_BUILD
38
- # COMMAND ${CMAKE_COMMAND} -E copy_if_different
39
- # ${TORCH_DLLS}
40
- # $<TARGET_FILE_DIR:yolov8_libtorch_example>)
41
- # endif (MSVC)
42
-
43
- include_directories(${TORCH_INCLUDE_DIRS})
44
-
45
- add_executable(yolov8_libtorch_inference "${CMAKE_CURRENT_SOURCE_DIR}/main.cc")
46
- target_link_libraries(yolov8_libtorch_inference ${TORCH_LIBRARIES} ${OpenCV_LIBS})
47
- set_property(TARGET yolov8_libtorch_inference PROPERTY CXX_STANDARD 17)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-LibTorch-CPP-Inference/README.md DELETED
@@ -1,35 +0,0 @@
1
- # YOLOv8 LibTorch Inference C++
2
-
3
- This example demonstrates how to perform inference using YOLOv8 models in C++ with LibTorch API.
4
-
5
- ## Dependencies
6
-
7
- | Dependency | Version |
8
- | ------------ | -------- |
9
- | OpenCV | >=4.0.0 |
10
- | C++ Standard | >=17 |
11
- | Cmake | >=3.18 |
12
- | Libtorch | >=1.12.1 |
13
-
14
- ## Usage
15
-
16
- ```bash
17
- git clone ultralytics
18
- cd ultralytics
19
- pip install .
20
- cd examples/YOLOv8-LibTorch-CPP-Inference
21
-
22
- mkdir build
23
- cd build
24
- cmake ..
25
- make
26
- ./yolov8_libtorch_inference
27
- ```
28
-
29
- ## Exporting YOLOv8
30
-
31
- To export YOLOv8 models:
32
-
33
- ```bash
34
- yolo export model=yolov8s.pt imgsz=640 format=torchscript
35
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-LibTorch-CPP-Inference/main.cc DELETED
@@ -1,260 +0,0 @@
1
- #include <iostream>
2
-
3
- #include <opencv2/core.hpp>
4
- #include <opencv2/imgproc.hpp>
5
- #include <opencv2/imgcodecs.hpp>
6
- #include <torch/torch.h>
7
- #include <torch/script.h>
8
-
9
- using torch::indexing::Slice;
10
- using torch::indexing::None;
11
-
12
-
13
- float generate_scale(cv::Mat& image, const std::vector<int>& target_size) {
14
- int origin_w = image.cols;
15
- int origin_h = image.rows;
16
-
17
- int target_h = target_size[0];
18
- int target_w = target_size[1];
19
-
20
- float ratio_h = static_cast<float>(target_h) / static_cast<float>(origin_h);
21
- float ratio_w = static_cast<float>(target_w) / static_cast<float>(origin_w);
22
- float resize_scale = std::min(ratio_h, ratio_w);
23
- return resize_scale;
24
- }
25
-
26
-
27
- float letterbox(cv::Mat &input_image, cv::Mat &output_image, const std::vector<int> &target_size) {
28
- if (input_image.cols == target_size[1] && input_image.rows == target_size[0]) {
29
- if (input_image.data == output_image.data) {
30
- return 1.;
31
- } else {
32
- output_image = input_image.clone();
33
- return 1.;
34
- }
35
- }
36
-
37
- float resize_scale = generate_scale(input_image, target_size);
38
- int new_shape_w = std::round(input_image.cols * resize_scale);
39
- int new_shape_h = std::round(input_image.rows * resize_scale);
40
- float padw = (target_size[1] - new_shape_w) / 2.;
41
- float padh = (target_size[0] - new_shape_h) / 2.;
42
-
43
- int top = std::round(padh - 0.1);
44
- int bottom = std::round(padh + 0.1);
45
- int left = std::round(padw - 0.1);
46
- int right = std::round(padw + 0.1);
47
-
48
- cv::resize(input_image, output_image,
49
- cv::Size(new_shape_w, new_shape_h),
50
- 0, 0, cv::INTER_AREA);
51
-
52
- cv::copyMakeBorder(output_image, output_image, top, bottom, left, right,
53
- cv::BORDER_CONSTANT, cv::Scalar(114.));
54
- return resize_scale;
55
- }
56
-
57
-
58
- torch::Tensor xyxy2xywh(const torch::Tensor& x) {
59
- auto y = torch::empty_like(x);
60
- y.index_put_({"...", 0}, (x.index({"...", 0}) + x.index({"...", 2})).div(2));
61
- y.index_put_({"...", 1}, (x.index({"...", 1}) + x.index({"...", 3})).div(2));
62
- y.index_put_({"...", 2}, x.index({"...", 2}) - x.index({"...", 0}));
63
- y.index_put_({"...", 3}, x.index({"...", 3}) - x.index({"...", 1}));
64
- return y;
65
- }
66
-
67
-
68
- torch::Tensor xywh2xyxy(const torch::Tensor& x) {
69
- auto y = torch::empty_like(x);
70
- auto dw = x.index({"...", 2}).div(2);
71
- auto dh = x.index({"...", 3}).div(2);
72
- y.index_put_({"...", 0}, x.index({"...", 0}) - dw);
73
- y.index_put_({"...", 1}, x.index({"...", 1}) - dh);
74
- y.index_put_({"...", 2}, x.index({"...", 0}) + dw);
75
- y.index_put_({"...", 3}, x.index({"...", 1}) + dh);
76
- return y;
77
- }
78
-
79
-
80
- // Reference: https://github.com/pytorch/vision/blob/main/torchvision/csrc/ops/cpu/nms_kernel.cpp
81
- torch::Tensor nms(const torch::Tensor& bboxes, const torch::Tensor& scores, float iou_threshold) {
82
- if (bboxes.numel() == 0)
83
- return torch::empty({0}, bboxes.options().dtype(torch::kLong));
84
-
85
- auto x1_t = bboxes.select(1, 0).contiguous();
86
- auto y1_t = bboxes.select(1, 1).contiguous();
87
- auto x2_t = bboxes.select(1, 2).contiguous();
88
- auto y2_t = bboxes.select(1, 3).contiguous();
89
-
90
- torch::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t);
91
-
92
- auto order_t = std::get<1>(
93
- scores.sort(/*stable=*/true, /*dim=*/0, /* descending=*/true));
94
-
95
- auto ndets = bboxes.size(0);
96
- torch::Tensor suppressed_t = torch::zeros({ndets}, bboxes.options().dtype(torch::kByte));
97
- torch::Tensor keep_t = torch::zeros({ndets}, bboxes.options().dtype(torch::kLong));
98
-
99
- auto suppressed = suppressed_t.data_ptr<uint8_t>();
100
- auto keep = keep_t.data_ptr<int64_t>();
101
- auto order = order_t.data_ptr<int64_t>();
102
- auto x1 = x1_t.data_ptr<float>();
103
- auto y1 = y1_t.data_ptr<float>();
104
- auto x2 = x2_t.data_ptr<float>();
105
- auto y2 = y2_t.data_ptr<float>();
106
- auto areas = areas_t.data_ptr<float>();
107
-
108
- int64_t num_to_keep = 0;
109
-
110
- for (int64_t _i = 0; _i < ndets; _i++) {
111
- auto i = order[_i];
112
- if (suppressed[i] == 1)
113
- continue;
114
- keep[num_to_keep++] = i;
115
- auto ix1 = x1[i];
116
- auto iy1 = y1[i];
117
- auto ix2 = x2[i];
118
- auto iy2 = y2[i];
119
- auto iarea = areas[i];
120
-
121
- for (int64_t _j = _i + 1; _j < ndets; _j++) {
122
- auto j = order[_j];
123
- if (suppressed[j] == 1)
124
- continue;
125
- auto xx1 = std::max(ix1, x1[j]);
126
- auto yy1 = std::max(iy1, y1[j]);
127
- auto xx2 = std::min(ix2, x2[j]);
128
- auto yy2 = std::min(iy2, y2[j]);
129
-
130
- auto w = std::max(static_cast<float>(0), xx2 - xx1);
131
- auto h = std::max(static_cast<float>(0), yy2 - yy1);
132
- auto inter = w * h;
133
- auto ovr = inter / (iarea + areas[j] - inter);
134
- if (ovr > iou_threshold)
135
- suppressed[j] = 1;
136
- }
137
- }
138
- return keep_t.narrow(0, 0, num_to_keep);
139
- }
140
-
141
-
142
- torch::Tensor non_max_suppression(torch::Tensor& prediction, float conf_thres = 0.25, float iou_thres = 0.45, int max_det = 300) {
143
- auto bs = prediction.size(0);
144
- auto nc = prediction.size(1) - 4;
145
- auto nm = prediction.size(1) - nc - 4;
146
- auto mi = 4 + nc;
147
- auto xc = prediction.index({Slice(), Slice(4, mi)}).amax(1) > conf_thres;
148
-
149
- prediction = prediction.transpose(-1, -2);
150
- prediction.index_put_({"...", Slice({None, 4})}, xywh2xyxy(prediction.index({"...", Slice(None, 4)})));
151
-
152
- std::vector<torch::Tensor> output;
153
- for (int i = 0; i < bs; i++) {
154
- output.push_back(torch::zeros({0, 6 + nm}, prediction.device()));
155
- }
156
-
157
- for (int xi = 0; xi < prediction.size(0); xi++) {
158
- auto x = prediction[xi];
159
- x = x.index({xc[xi]});
160
- auto x_split = x.split({4, nc, nm}, 1);
161
- auto box = x_split[0], cls = x_split[1], mask = x_split[2];
162
- auto [conf, j] = cls.max(1, true);
163
- x = torch::cat({box, conf, j.toType(torch::kFloat), mask}, 1);
164
- x = x.index({conf.view(-1) > conf_thres});
165
- int n = x.size(0);
166
- if (!n) { continue; }
167
-
168
- // NMS
169
- auto c = x.index({Slice(), Slice{5, 6}}) * 7680;
170
- auto boxes = x.index({Slice(), Slice(None, 4)}) + c;
171
- auto scores = x.index({Slice(), 4});
172
- auto i = nms(boxes, scores, iou_thres);
173
- i = i.index({Slice(None, max_det)});
174
- output[xi] = x.index({i});
175
- }
176
-
177
- return torch::stack(output);
178
- }
179
-
180
-
181
- torch::Tensor clip_boxes(torch::Tensor& boxes, const std::vector<int>& shape) {
182
- boxes.index_put_({"...", 0}, boxes.index({"...", 0}).clamp(0, shape[1]));
183
- boxes.index_put_({"...", 1}, boxes.index({"...", 1}).clamp(0, shape[0]));
184
- boxes.index_put_({"...", 2}, boxes.index({"...", 2}).clamp(0, shape[1]));
185
- boxes.index_put_({"...", 3}, boxes.index({"...", 3}).clamp(0, shape[0]));
186
- return boxes;
187
- }
188
-
189
-
190
- torch::Tensor scale_boxes(const std::vector<int>& img1_shape, torch::Tensor& boxes, const std::vector<int>& img0_shape) {
191
- auto gain = (std::min)((float)img1_shape[0] / img0_shape[0], (float)img1_shape[1] / img0_shape[1]);
192
- auto pad0 = std::round((float)(img1_shape[1] - img0_shape[1] * gain) / 2. - 0.1);
193
- auto pad1 = std::round((float)(img1_shape[0] - img0_shape[0] * gain) / 2. - 0.1);
194
-
195
- boxes.index_put_({"...", 0}, boxes.index({"...", 0}) - pad0);
196
- boxes.index_put_({"...", 2}, boxes.index({"...", 2}) - pad0);
197
- boxes.index_put_({"...", 1}, boxes.index({"...", 1}) - pad1);
198
- boxes.index_put_({"...", 3}, boxes.index({"...", 3}) - pad1);
199
- boxes.index_put_({"...", Slice(None, 4)}, boxes.index({"...", Slice(None, 4)}).div(gain));
200
- return boxes;
201
- }
202
-
203
-
204
- int main() {
205
- // Device
206
- torch::Device device(torch::cuda::is_available() ? torch::kCUDA :torch::kCPU);
207
-
208
- // Note that in this example the classes are hard-coded
209
- std::vector<std::string> classes {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant",
210
- "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra",
211
- "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
212
- "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife",
213
- "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
214
- "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
215
- "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};
216
-
217
- try {
218
- // Load the model (e.g. yolov8s.torchscript)
219
- std::string model_path = "/path/to/yolov8s.torchscript";
220
- torch::jit::script::Module yolo_model;
221
- yolo_model = torch::jit::load(model_path);
222
- yolo_model.eval();
223
- yolo_model.to(device, torch::kFloat32);
224
-
225
- // Load image and preprocess
226
- cv::Mat image = cv::imread("/path/to/bus.jpg");
227
- cv::Mat input_image;
228
- letterbox(image, input_image, {640, 640});
229
- cv::cvtColor(input_image, input_image, cv::COLOR_BGR2RGB);
230
-
231
- torch::Tensor image_tensor = torch::from_blob(input_image.data, {input_image.rows, input_image.cols, 3}, torch::kByte).to(device);
232
- image_tensor = image_tensor.toType(torch::kFloat32).div(255);
233
- image_tensor = image_tensor.permute({2, 0, 1});
234
- image_tensor = image_tensor.unsqueeze(0);
235
- std::vector<torch::jit::IValue> inputs {image_tensor};
236
-
237
- // Inference
238
- torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu();
239
-
240
- // NMS
241
- auto keep = non_max_suppression(output)[0];
242
- auto boxes = keep.index({Slice(), Slice(None, 4)});
243
- keep.index_put_({Slice(), Slice(None, 4)}, scale_boxes({input_image.rows, input_image.cols}, boxes, {image.rows, image.cols}));
244
-
245
- // Show the results
246
- for (int i = 0; i < keep.size(0); i++) {
247
- int x1 = keep[i][0].item().toFloat();
248
- int y1 = keep[i][1].item().toFloat();
249
- int x2 = keep[i][2].item().toFloat();
250
- int y2 = keep[i][3].item().toFloat();
251
- float conf = keep[i][4].item().toFloat();
252
- int cls = keep[i][5].item().toInt();
253
- std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "] Conf: " << conf << " Class: " << classes[cls] << std::endl;
254
- }
255
- } catch (const c10::Error& e) {
256
- std::cout << e.msg() << std::endl;
257
- }
258
-
259
- return 0;
260
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-CPP/CMakeLists.txt DELETED
@@ -1,99 +0,0 @@
1
- cmake_minimum_required(VERSION 3.5)
2
-
3
- set(PROJECT_NAME Yolov8OnnxRuntimeCPPInference)
4
- project(${PROJECT_NAME} VERSION 0.0.1 LANGUAGES CXX)
5
-
6
-
7
- # -------------- Support C++17 for using filesystem ------------------#
8
- set(CMAKE_CXX_STANDARD 17)
9
- set(CMAKE_CXX_STANDARD_REQUIRED ON)
10
- set(CMAKE_CXX_EXTENSIONS ON)
11
- set(CMAKE_INCLUDE_CURRENT_DIR ON)
12
-
13
-
14
- # -------------- OpenCV ------------------#
15
- find_package(OpenCV REQUIRED)
16
- include_directories(${OpenCV_INCLUDE_DIRS})
17
-
18
-
19
- # -------------- Compile CUDA for FP16 inference if needed ------------------#
20
- option(USE_CUDA "Enable CUDA support" ON)
21
- if (NOT APPLE AND USE_CUDA)
22
- find_package(CUDA REQUIRED)
23
- include_directories(${CUDA_INCLUDE_DIRS})
24
- add_definitions(-DUSE_CUDA)
25
- else ()
26
- set(USE_CUDA OFF)
27
- endif ()
28
-
29
- # -------------- ONNXRUNTIME ------------------#
30
-
31
- # Set ONNXRUNTIME_VERSION
32
- set(ONNXRUNTIME_VERSION 1.15.1)
33
-
34
- if (WIN32)
35
- if (USE_CUDA)
36
- set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
37
- else ()
38
- set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
39
- endif ()
40
- elseif (LINUX)
41
- if (USE_CUDA)
42
- set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
43
- else ()
44
- set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
45
- endif ()
46
- elseif (APPLE)
47
- set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}")
48
- # Apple X64 binary
49
- # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-x64-${ONNXRUNTIME_VERSION}")
50
- # Apple Universal binary
51
- # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-universal2-${ONNXRUNTIME_VERSION}")
52
- else ()
53
- message(SEND_ERROR "Variable ONNXRUNTIME_ROOT is not set properly. Please check if your cmake project \
54
- is not compiled with `-D WIN32=TRUE`, `-D LINUX=TRUE`, or `-D APPLE=TRUE`!")
55
- endif ()
56
-
57
- include_directories(${PROJECT_NAME} ${ONNXRUNTIME_ROOT}/include)
58
-
59
- set(PROJECT_SOURCES
60
- main.cpp
61
- inference.h
62
- inference.cpp
63
- )
64
-
65
- add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
66
-
67
- if (WIN32)
68
- target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib)
69
- if (USE_CUDA)
70
- target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
71
- endif ()
72
- elseif (LINUX)
73
- target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so)
74
- if (USE_CUDA)
75
- target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
76
- endif ()
77
- elseif (APPLE)
78
- target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
79
- endif ()
80
-
81
- # For windows system, copy onnxruntime.dll to the same folder of the executable file
82
- if (WIN32)
83
- add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
84
- COMMAND ${CMAKE_COMMAND} -E copy_if_different
85
- "${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
86
- $<TARGET_FILE_DIR:${PROJECT_NAME}>)
87
- endif ()
88
-
89
- # Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
90
- # and put it in the same folder of the executable file
91
- configure_file(coco.yaml ${CMAKE_CURRENT_BINARY_DIR}/coco.yaml COPYONLY)
92
-
93
- # Copy yolov8n.onnx file to the same folder of the executable file
94
- configure_file(yolov8n.onnx ${CMAKE_CURRENT_BINARY_DIR}/yolov8n.onnx COPYONLY)
95
-
96
- # Create folder name images in the same folder of the executable file
97
- add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
98
- COMMAND ${CMAKE_COMMAND} -E make_directory ${CMAKE_CURRENT_BINARY_DIR}/images
99
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-CPP/README.md DELETED
@@ -1,120 +0,0 @@
1
- # YOLOv8 OnnxRuntime C++
2
-
3
- <img alt="C++" src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B"> <img alt="Onnx-runtime" src="https://img.shields.io/badge/OnnxRuntime-717272.svg?logo=Onnx&logoColor=white">
4
-
5
- This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
6
-
7
- ## Benefits ✨
8
-
9
- - Friendly for deployment in the industrial sector.
10
- - Faster than OpenCV's DNN inference on both CPU and GPU.
11
- - Supports FP32 and FP16 CUDA acceleration.
12
-
13
- ## Note ☕
14
-
15
- 1. Benefit for Ultralytics' latest release, a `Transpose` op is added to the YOLOv8 model, while make v8 and v5 has the same output shape. Therefore, you can run inference with YOLOv5/v7/v8 via this project.
16
-
17
- ## Exporting YOLOv8 Models 📦
18
-
19
- To export YOLOv8 models, use the following Python script:
20
-
21
- ```python
22
- from ultralytics import YOLO
23
-
24
- # Load a YOLOv8 model
25
- model = YOLO("yolov8n.pt")
26
-
27
- # Export the model
28
- model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
29
- ```
30
-
31
- Alternatively, you can use the following command for exporting the model in the terminal
32
-
33
- ```bash
34
- yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
35
- ```
36
-
37
- ## Exporting YOLOv8 FP16 Models 📦
38
-
39
- ```python
40
- import onnx
41
- from onnxconverter_common import float16
42
-
43
- model = onnx.load(R"YOUR_ONNX_PATH")
44
- model_fp16 = float16.convert_float_to_float16(model)
45
- onnx.save(model_fp16, R"YOUR_FP16_ONNX_PATH")
46
- ```
47
-
48
- ## Download COCO.yaml file 📂
49
-
50
- In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)
51
-
52
- ## Dependencies ⚙️
53
-
54
- | Dependency | Version |
55
- | -------------------------------- | ------------- |
56
- | Onnxruntime(linux,windows,macos) | >=1.14.1 |
57
- | OpenCV | >=4.0.0 |
58
- | C++ Standard | >=17 |
59
- | Cmake | >=3.5 |
60
- | Cuda (Optional) | >=11.4 \<12.0 |
61
- | cuDNN (Cuda required) | =8 |
62
-
63
- Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
64
-
65
- Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
66
-
67
- ## Build 🛠️
68
-
69
- 1. Clone the repository to your local machine.
70
-
71
- 2. Navigate to the root directory of the repository.
72
-
73
- 3. Create a build directory and navigate to it:
74
-
75
- ```console
76
- mkdir build && cd build
77
- ```
78
-
79
- 4. Run CMake to generate the build files:
80
-
81
- ```console
82
- cmake ..
83
- ```
84
-
85
- **Notice**:
86
-
87
- If you encounter an error indicating that the `ONNXRUNTIME_ROOT` variable is not set correctly, you can resolve this by building the project using the appropriate command tailored to your system.
88
-
89
- ```console
90
- # compiled in a win32 system
91
- cmake -D WIN32=TRUE ..
92
- # compiled in a linux system
93
- cmake -D LINUX=TRUE ..
94
- # compiled in an apple system
95
- cmake -D APPLE=TRUE ..
96
- ```
97
-
98
- 5. Build the project:
99
-
100
- ```console
101
- make
102
- ```
103
-
104
- 6. The built executable should now be located in the `build` directory.
105
-
106
- ## Usage 🚀
107
-
108
- ```c++
109
- //change your param as you like
110
- //Pay attention to your device and the onnx model type(fp32 or fp16)
111
- DL_INIT_PARAM params;
112
- params.rectConfidenceThreshold = 0.1;
113
- params.iouThreshold = 0.5;
114
- params.modelPath = "yolov8n.onnx";
115
- params.imgSize = { 640, 640 };
116
- params.cudaEnable = true;
117
- params.modelType = YOLO_DETECT_V8;
118
- yoloDetector->CreateSession(params);
119
- Detector(yoloDetector);
120
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-CPP/inference.cpp DELETED
@@ -1,375 +0,0 @@
1
- #include "inference.h"
2
- #include <regex>
3
-
4
- #define benchmark
5
- #define min(a,b) (((a) < (b)) ? (a) : (b))
6
- YOLO_V8::YOLO_V8() {
7
-
8
- }
9
-
10
-
11
- YOLO_V8::~YOLO_V8() {
12
- delete session;
13
- }
14
-
15
- #ifdef USE_CUDA
16
- namespace Ort
17
- {
18
- template<>
19
- struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
20
- }
21
- #endif
22
-
23
-
24
- template<typename T>
25
- char* BlobFromImage(cv::Mat& iImg, T& iBlob) {
26
- int channels = iImg.channels();
27
- int imgHeight = iImg.rows;
28
- int imgWidth = iImg.cols;
29
-
30
- for (int c = 0; c < channels; c++)
31
- {
32
- for (int h = 0; h < imgHeight; h++)
33
- {
34
- for (int w = 0; w < imgWidth; w++)
35
- {
36
- iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
37
- (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
38
- }
39
- }
40
- }
41
- return RET_OK;
42
- }
43
-
44
-
45
- char* YOLO_V8::PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
46
- {
47
- if (iImg.channels() == 3)
48
- {
49
- oImg = iImg.clone();
50
- cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
51
- }
52
- else
53
- {
54
- cv::cvtColor(iImg, oImg, cv::COLOR_GRAY2RGB);
55
- }
56
-
57
- switch (modelType)
58
- {
59
- case YOLO_DETECT_V8:
60
- case YOLO_POSE:
61
- case YOLO_DETECT_V8_HALF:
62
- case YOLO_POSE_V8_HALF://LetterBox
63
- {
64
- if (iImg.cols >= iImg.rows)
65
- {
66
- resizeScales = iImg.cols / (float)iImgSize.at(0);
67
- cv::resize(oImg, oImg, cv::Size(iImgSize.at(0), int(iImg.rows / resizeScales)));
68
- }
69
- else
70
- {
71
- resizeScales = iImg.rows / (float)iImgSize.at(0);
72
- cv::resize(oImg, oImg, cv::Size(int(iImg.cols / resizeScales), iImgSize.at(1)));
73
- }
74
- cv::Mat tempImg = cv::Mat::zeros(iImgSize.at(0), iImgSize.at(1), CV_8UC3);
75
- oImg.copyTo(tempImg(cv::Rect(0, 0, oImg.cols, oImg.rows)));
76
- oImg = tempImg;
77
- break;
78
- }
79
- case YOLO_CLS://CenterCrop
80
- {
81
- int h = iImg.rows;
82
- int w = iImg.cols;
83
- int m = min(h, w);
84
- int top = (h - m) / 2;
85
- int left = (w - m) / 2;
86
- cv::resize(oImg(cv::Rect(left, top, m, m)), oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
87
- break;
88
- }
89
- }
90
- return RET_OK;
91
- }
92
-
93
-
94
- char* YOLO_V8::CreateSession(DL_INIT_PARAM& iParams) {
95
- char* Ret = RET_OK;
96
- std::regex pattern("[\u4e00-\u9fa5]");
97
- bool result = std::regex_search(iParams.modelPath, pattern);
98
- if (result)
99
- {
100
- Ret = "[YOLO_V8]:Your model path is error.Change your model path without chinese characters.";
101
- std::cout << Ret << std::endl;
102
- return Ret;
103
- }
104
- try
105
- {
106
- rectConfidenceThreshold = iParams.rectConfidenceThreshold;
107
- iouThreshold = iParams.iouThreshold;
108
- imgSize = iParams.imgSize;
109
- modelType = iParams.modelType;
110
- env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
111
- Ort::SessionOptions sessionOption;
112
- if (iParams.cudaEnable)
113
- {
114
- cudaEnable = iParams.cudaEnable;
115
- OrtCUDAProviderOptions cudaOption;
116
- cudaOption.device_id = 0;
117
- sessionOption.AppendExecutionProvider_CUDA(cudaOption);
118
- }
119
- sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
120
- sessionOption.SetIntraOpNumThreads(iParams.intraOpNumThreads);
121
- sessionOption.SetLogSeverityLevel(iParams.logSeverityLevel);
122
-
123
- #ifdef _WIN32
124
- int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), nullptr, 0);
125
- wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
126
- MultiByteToWideChar(CP_UTF8, 0, iParams.modelPath.c_str(), static_cast<int>(iParams.modelPath.length()), wide_cstr, ModelPathSize);
127
- wide_cstr[ModelPathSize] = L'\0';
128
- const wchar_t* modelPath = wide_cstr;
129
- #else
130
- const char* modelPath = iParams.modelPath.c_str();
131
- #endif // _WIN32
132
-
133
- session = new Ort::Session(env, modelPath, sessionOption);
134
- Ort::AllocatorWithDefaultOptions allocator;
135
- size_t inputNodesNum = session->GetInputCount();
136
- for (size_t i = 0; i < inputNodesNum; i++)
137
- {
138
- Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
139
- char* temp_buf = new char[50];
140
- strcpy(temp_buf, input_node_name.get());
141
- inputNodeNames.push_back(temp_buf);
142
- }
143
- size_t OutputNodesNum = session->GetOutputCount();
144
- for (size_t i = 0; i < OutputNodesNum; i++)
145
- {
146
- Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
147
- char* temp_buf = new char[10];
148
- strcpy(temp_buf, output_node_name.get());
149
- outputNodeNames.push_back(temp_buf);
150
- }
151
- options = Ort::RunOptions{ nullptr };
152
- WarmUpSession();
153
- return RET_OK;
154
- }
155
- catch (const std::exception& e)
156
- {
157
- const char* str1 = "[YOLO_V8]:";
158
- const char* str2 = e.what();
159
- std::string result = std::string(str1) + std::string(str2);
160
- char* merged = new char[result.length() + 1];
161
- std::strcpy(merged, result.c_str());
162
- std::cout << merged << std::endl;
163
- delete[] merged;
164
- return "[YOLO_V8]:Create session failed.";
165
- }
166
-
167
- }
168
-
169
-
170
- char* YOLO_V8::RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult) {
171
- #ifdef benchmark
172
- clock_t starttime_1 = clock();
173
- #endif // benchmark
174
-
175
- char* Ret = RET_OK;
176
- cv::Mat processedImg;
177
- PreProcess(iImg, imgSize, processedImg);
178
- if (modelType < 4)
179
- {
180
- float* blob = new float[processedImg.total() * 3];
181
- BlobFromImage(processedImg, blob);
182
- std::vector<int64_t> inputNodeDims = { 1, 3, imgSize.at(0), imgSize.at(1) };
183
- TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
184
- }
185
- else
186
- {
187
- #ifdef USE_CUDA
188
- half* blob = new half[processedImg.total() * 3];
189
- BlobFromImage(processedImg, blob);
190
- std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
191
- TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
192
- #endif
193
- }
194
-
195
- return Ret;
196
- }
197
-
198
-
199
- template<typename N>
200
- char* YOLO_V8::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
201
- std::vector<DL_RESULT>& oResult) {
202
- Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
203
- Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
204
- inputNodeDims.data(), inputNodeDims.size());
205
- #ifdef benchmark
206
- clock_t starttime_2 = clock();
207
- #endif // benchmark
208
- auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
209
- outputNodeNames.size());
210
- #ifdef benchmark
211
- clock_t starttime_3 = clock();
212
- #endif // benchmark
213
-
214
- Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
215
- auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
216
- std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
217
- auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
218
- delete[] blob;
219
- switch (modelType)
220
- {
221
- case YOLO_DETECT_V8:
222
- case YOLO_DETECT_V8_HALF:
223
- {
224
- int signalResultNum = outputNodeDims[1];//84
225
- int strideNum = outputNodeDims[2];//8400
226
- std::vector<int> class_ids;
227
- std::vector<float> confidences;
228
- std::vector<cv::Rect> boxes;
229
- cv::Mat rawData;
230
- if (modelType == YOLO_DETECT_V8)
231
- {
232
- // FP32
233
- rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
234
- }
235
- else
236
- {
237
- // FP16
238
- rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
239
- rawData.convertTo(rawData, CV_32F);
240
- }
241
- // Note:
242
- // ultralytics add transpose operator to the output of yolov8 model.which make yolov8/v5/v7 has same shape
243
- // https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt
244
- rawData = rawData.t();
245
-
246
- float* data = (float*)rawData.data;
247
-
248
- for (int i = 0; i < strideNum; ++i)
249
- {
250
- float* classesScores = data + 4;
251
- cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
252
- cv::Point class_id;
253
- double maxClassScore;
254
- cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
255
- if (maxClassScore > rectConfidenceThreshold)
256
- {
257
- confidences.push_back(maxClassScore);
258
- class_ids.push_back(class_id.x);
259
- float x = data[0];
260
- float y = data[1];
261
- float w = data[2];
262
- float h = data[3];
263
-
264
- int left = int((x - 0.5 * w) * resizeScales);
265
- int top = int((y - 0.5 * h) * resizeScales);
266
-
267
- int width = int(w * resizeScales);
268
- int height = int(h * resizeScales);
269
-
270
- boxes.push_back(cv::Rect(left, top, width, height));
271
- }
272
- data += signalResultNum;
273
- }
274
- std::vector<int> nmsResult;
275
- cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
276
- for (int i = 0; i < nmsResult.size(); ++i)
277
- {
278
- int idx = nmsResult[i];
279
- DL_RESULT result;
280
- result.classId = class_ids[idx];
281
- result.confidence = confidences[idx];
282
- result.box = boxes[idx];
283
- oResult.push_back(result);
284
- }
285
-
286
- #ifdef benchmark
287
- clock_t starttime_4 = clock();
288
- double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
289
- double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
290
- double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
291
- if (cudaEnable)
292
- {
293
- std::cout << "[YOLO_V8(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
294
- }
295
- else
296
- {
297
- std::cout << "[YOLO_V8(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
298
- }
299
- #endif // benchmark
300
-
301
- break;
302
- }
303
- case YOLO_CLS:
304
- case YOLO_CLS_HALF:
305
- {
306
- cv::Mat rawData;
307
- if (modelType == YOLO_CLS) {
308
- // FP32
309
- rawData = cv::Mat(1, this->classes.size(), CV_32F, output);
310
- } else {
311
- // FP16
312
- rawData = cv::Mat(1, this->classes.size(), CV_16F, output);
313
- rawData.convertTo(rawData, CV_32F);
314
- }
315
- float *data = (float *) rawData.data;
316
-
317
- DL_RESULT result;
318
- for (int i = 0; i < this->classes.size(); i++)
319
- {
320
- result.classId = i;
321
- result.confidence = data[i];
322
- oResult.push_back(result);
323
- }
324
- break;
325
- }
326
- default:
327
- std::cout << "[YOLO_V8]: " << "Not support model type." << std::endl;
328
- }
329
- return RET_OK;
330
-
331
- }
332
-
333
-
334
- char* YOLO_V8::WarmUpSession() {
335
- clock_t starttime_1 = clock();
336
- cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
337
- cv::Mat processedImg;
338
- PreProcess(iImg, imgSize, processedImg);
339
- if (modelType < 4)
340
- {
341
- float* blob = new float[iImg.total() * 3];
342
- BlobFromImage(processedImg, blob);
343
- std::vector<int64_t> YOLO_input_node_dims = { 1, 3, imgSize.at(0), imgSize.at(1) };
344
- Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
345
- Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
346
- YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
347
- auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
348
- outputNodeNames.size());
349
- delete[] blob;
350
- clock_t starttime_4 = clock();
351
- double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
352
- if (cudaEnable)
353
- {
354
- std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
355
- }
356
- }
357
- else
358
- {
359
- #ifdef USE_CUDA
360
- half* blob = new half[iImg.total() * 3];
361
- BlobFromImage(processedImg, blob);
362
- std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
363
- Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
364
- auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
365
- delete[] blob;
366
- clock_t starttime_4 = clock();
367
- double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
368
- if (cudaEnable)
369
- {
370
- std::cout << "[YOLO_V8(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
371
- }
372
- #endif
373
- }
374
- return RET_OK;
375
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-CPP/inference.h DELETED
@@ -1,94 +0,0 @@
1
- #pragma once
2
-
3
- #define RET_OK nullptr
4
-
5
- #ifdef _WIN32
6
- #include <Windows.h>
7
- #include <direct.h>
8
- #include <io.h>
9
- #endif
10
-
11
- #include <string>
12
- #include <vector>
13
- #include <cstdio>
14
- #include <opencv2/opencv.hpp>
15
- #include "onnxruntime_cxx_api.h"
16
-
17
- #ifdef USE_CUDA
18
- #include <cuda_fp16.h>
19
- #endif
20
-
21
-
22
- enum MODEL_TYPE
23
- {
24
- //FLOAT32 MODEL
25
- YOLO_DETECT_V8 = 1,
26
- YOLO_POSE = 2,
27
- YOLO_CLS = 3,
28
-
29
- //FLOAT16 MODEL
30
- YOLO_DETECT_V8_HALF = 4,
31
- YOLO_POSE_V8_HALF = 5,
32
- YOLO_CLS_HALF = 6
33
- };
34
-
35
-
36
- typedef struct _DL_INIT_PARAM
37
- {
38
- std::string modelPath;
39
- MODEL_TYPE modelType = YOLO_DETECT_V8;
40
- std::vector<int> imgSize = { 640, 640 };
41
- float rectConfidenceThreshold = 0.6;
42
- float iouThreshold = 0.5;
43
- int keyPointsNum = 2;//Note:kpt number for pose
44
- bool cudaEnable = false;
45
- int logSeverityLevel = 3;
46
- int intraOpNumThreads = 1;
47
- } DL_INIT_PARAM;
48
-
49
-
50
- typedef struct _DL_RESULT
51
- {
52
- int classId;
53
- float confidence;
54
- cv::Rect box;
55
- std::vector<cv::Point2f> keyPoints;
56
- } DL_RESULT;
57
-
58
-
59
- class YOLO_V8
60
- {
61
- public:
62
- YOLO_V8();
63
-
64
- ~YOLO_V8();
65
-
66
- public:
67
- char* CreateSession(DL_INIT_PARAM& iParams);
68
-
69
- char* RunSession(cv::Mat& iImg, std::vector<DL_RESULT>& oResult);
70
-
71
- char* WarmUpSession();
72
-
73
- template<typename N>
74
- char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,
75
- std::vector<DL_RESULT>& oResult);
76
-
77
- char* PreProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg);
78
-
79
- std::vector<std::string> classes{};
80
-
81
- private:
82
- Ort::Env env;
83
- Ort::Session* session;
84
- bool cudaEnable;
85
- Ort::RunOptions options;
86
- std::vector<const char*> inputNodeNames;
87
- std::vector<const char*> outputNodeNames;
88
-
89
- MODEL_TYPE modelType;
90
- std::vector<int> imgSize;
91
- float rectConfidenceThreshold;
92
- float iouThreshold;
93
- float resizeScales;//letterbox scale
94
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-CPP/main.cpp DELETED
@@ -1,193 +0,0 @@
1
- #include <iostream>
2
- #include <iomanip>
3
- #include "inference.h"
4
- #include <filesystem>
5
- #include <fstream>
6
- #include <random>
7
-
8
- void Detector(YOLO_V8*& p) {
9
- std::filesystem::path current_path = std::filesystem::current_path();
10
- std::filesystem::path imgs_path = current_path / "images";
11
- for (auto& i : std::filesystem::directory_iterator(imgs_path))
12
- {
13
- if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg")
14
- {
15
- std::string img_path = i.path().string();
16
- cv::Mat img = cv::imread(img_path);
17
- std::vector<DL_RESULT> res;
18
- p->RunSession(img, res);
19
-
20
- for (auto& re : res)
21
- {
22
- cv::RNG rng(cv::getTickCount());
23
- cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
24
-
25
- cv::rectangle(img, re.box, color, 3);
26
-
27
- float confidence = floor(100 * re.confidence) / 100;
28
- std::cout << std::fixed << std::setprecision(2);
29
- std::string label = p->classes[re.classId] + " " +
30
- std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4);
31
-
32
- cv::rectangle(
33
- img,
34
- cv::Point(re.box.x, re.box.y - 25),
35
- cv::Point(re.box.x + label.length() * 15, re.box.y),
36
- color,
37
- cv::FILLED
38
- );
39
-
40
- cv::putText(
41
- img,
42
- label,
43
- cv::Point(re.box.x, re.box.y - 5),
44
- cv::FONT_HERSHEY_SIMPLEX,
45
- 0.75,
46
- cv::Scalar(0, 0, 0),
47
- 2
48
- );
49
-
50
-
51
- }
52
- std::cout << "Press any key to exit" << std::endl;
53
- cv::imshow("Result of Detection", img);
54
- cv::waitKey(0);
55
- cv::destroyAllWindows();
56
- }
57
- }
58
- }
59
-
60
-
61
- void Classifier(YOLO_V8*& p)
62
- {
63
- std::filesystem::path current_path = std::filesystem::current_path();
64
- std::filesystem::path imgs_path = current_path;// / "images"
65
- std::random_device rd;
66
- std::mt19937 gen(rd());
67
- std::uniform_int_distribution<int> dis(0, 255);
68
- for (auto& i : std::filesystem::directory_iterator(imgs_path))
69
- {
70
- if (i.path().extension() == ".jpg" || i.path().extension() == ".png")
71
- {
72
- std::string img_path = i.path().string();
73
- //std::cout << img_path << std::endl;
74
- cv::Mat img = cv::imread(img_path);
75
- std::vector<DL_RESULT> res;
76
- char* ret = p->RunSession(img, res);
77
-
78
- float positionY = 50;
79
- for (int i = 0; i < res.size(); i++)
80
- {
81
- int r = dis(gen);
82
- int g = dis(gen);
83
- int b = dis(gen);
84
- cv::putText(img, std::to_string(i) + ":", cv::Point(10, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2);
85
- cv::putText(img, std::to_string(res.at(i).confidence), cv::Point(70, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2);
86
- positionY += 50;
87
- }
88
-
89
- cv::imshow("TEST_CLS", img);
90
- cv::waitKey(0);
91
- cv::destroyAllWindows();
92
- //cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img);
93
- }
94
-
95
- }
96
- }
97
-
98
-
99
-
100
- int ReadCocoYaml(YOLO_V8*& p) {
101
- // Open the YAML file
102
- std::ifstream file("coco.yaml");
103
- if (!file.is_open())
104
- {
105
- std::cerr << "Failed to open file" << std::endl;
106
- return 1;
107
- }
108
-
109
- // Read the file line by line
110
- std::string line;
111
- std::vector<std::string> lines;
112
- while (std::getline(file, line))
113
- {
114
- lines.push_back(line);
115
- }
116
-
117
- // Find the start and end of the names section
118
- std::size_t start = 0;
119
- std::size_t end = 0;
120
- for (std::size_t i = 0; i < lines.size(); i++)
121
- {
122
- if (lines[i].find("names:") != std::string::npos)
123
- {
124
- start = i + 1;
125
- }
126
- else if (start > 0 && lines[i].find(':') == std::string::npos)
127
- {
128
- end = i;
129
- break;
130
- }
131
- }
132
-
133
- // Extract the names
134
- std::vector<std::string> names;
135
- for (std::size_t i = start; i < end; i++)
136
- {
137
- std::stringstream ss(lines[i]);
138
- std::string name;
139
- std::getline(ss, name, ':'); // Extract the number before the delimiter
140
- std::getline(ss, name); // Extract the string after the delimiter
141
- names.push_back(name);
142
- }
143
-
144
- p->classes = names;
145
- return 0;
146
- }
147
-
148
-
149
- void DetectTest()
150
- {
151
- YOLO_V8* yoloDetector = new YOLO_V8;
152
- ReadCocoYaml(yoloDetector);
153
- DL_INIT_PARAM params;
154
- params.rectConfidenceThreshold = 0.1;
155
- params.iouThreshold = 0.5;
156
- params.modelPath = "yolov8n.onnx";
157
- params.imgSize = { 640, 640 };
158
- #ifdef USE_CUDA
159
- params.cudaEnable = true;
160
-
161
- // GPU FP32 inference
162
- params.modelType = YOLO_DETECT_V8;
163
- // GPU FP16 inference
164
- //Note: change fp16 onnx model
165
- //params.modelType = YOLO_DETECT_V8_HALF;
166
-
167
- #else
168
- // CPU inference
169
- params.modelType = YOLO_DETECT_V8;
170
- params.cudaEnable = false;
171
-
172
- #endif
173
- yoloDetector->CreateSession(params);
174
- Detector(yoloDetector);
175
- }
176
-
177
-
178
- void ClsTest()
179
- {
180
- YOLO_V8* yoloDetector = new YOLO_V8;
181
- std::string model_path = "cls.onnx";
182
- ReadCocoYaml(yoloDetector);
183
- DL_INIT_PARAM params{ model_path, YOLO_CLS, {224, 224} };
184
- yoloDetector->CreateSession(params);
185
- Classifier(yoloDetector);
186
- }
187
-
188
-
189
- int main()
190
- {
191
- //DetectTest();
192
- ClsTest();
193
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml DELETED
@@ -1,24 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- [package]
4
- name = "yolov8-rs"
5
- version = "0.1.0"
6
- edition = "2021"
7
-
8
- # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
9
-
10
- [dependencies]
11
- clap = { version = "4.2.4", features = ["derive"] }
12
- image = { version = "0.25.2"}
13
- imageproc = { version = "0.25.0"}
14
- ndarray = { version = "0.16" }
15
- ort = { version = "2.0.0-rc.5", features = ["cuda", "tensorrt", "load-dynamic", "copy-dylibs", "half"]}
16
- rusttype = { version = "0.9.3" }
17
- anyhow = { version = "1.0.75" }
18
- regex = { version = "1.5.4" }
19
- rand = { version = "0.8.5" }
20
- chrono = { version = "0.4.30" }
21
- half = { version = "2.3.1" }
22
- dirs = { version = "5.0.1" }
23
- ureq = { version = "2.9.1" }
24
- ab_glyph = "0.2.29"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/README.md DELETED
@@ -1,212 +0,0 @@
1
- # YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks
2
-
3
- This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection`, `Pose Detection` and `OBB` using ONNXRuntime.
4
-
5
- ## Recently Updated
6
-
7
- - Add YOLOv8-OBB demo
8
- - Update ONNXRuntime to 1.19.x
9
-
10
- Newly updated YOLOv8 example code is located in [this repository](https://github.com/jamjamjon/usls/tree/main/examples/yolo)
11
-
12
- ## Features
13
-
14
- - Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection`, `OBB` tasks.
15
- - Support `FP16` & `FP32` ONNX models.
16
- - Support `CPU`, `CUDA` and `TensorRT` execution provider to accelerate computation.
17
- - Support dynamic input shapes(`batch`, `width`, `height`).
18
-
19
- ## Installation
20
-
21
- ### 1. Install Rust
22
-
23
- Please follow the Rust official installation. (https://www.rust-lang.org/tools/install)
24
-
25
- ### 2. ONNXRuntime Linking
26
-
27
- - #### For detailed setup instructions, refer to the [ORT documentation](https://ort.pyke.io/setup/linking).
28
-
29
- - #### For Linux or macOS Users:
30
- - Download the ONNX Runtime package from the [Releases page](https://github.com/microsoft/onnxruntime/releases).
31
- - Set up the library path by exporting the `ORT_DYLIB_PATH` environment variable:
32
- ```shell
33
- export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0
34
- ```
35
-
36
- ### 3. \[Optional\] Install CUDA & CuDNN & TensorRT
37
-
38
- - CUDA execution provider requires CUDA v11.6+.
39
- - TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+.
40
-
41
- ## Get Started
42
-
43
- ### 1. Export the YOLOv8 ONNX Models
44
-
45
- ```bash
46
- pip install -U ultralytics
47
-
48
- # export onnx model with dynamic shapes
49
- yolo export model=yolov8m.pt format=onnx simplify dynamic
50
- yolo export model=yolov8m-cls.pt format=onnx simplify dynamic
51
- yolo export model=yolov8m-pose.pt format=onnx simplify dynamic
52
- yolo export model=yolov8m-seg.pt format=onnx simplify dynamic
53
-
54
-
55
- # export onnx model with constant shapes
56
- yolo export model=yolov8m.pt format=onnx simplify
57
- yolo export model=yolov8m-cls.pt format=onnx simplify
58
- yolo export model=yolov8m-pose.pt format=onnx simplify
59
- yolo export model=yolov8m-seg.pt format=onnx simplify
60
- ```
61
-
62
- ### 2. Run Inference
63
-
64
- It will perform inference with the ONNX model on the source image.
65
-
66
- ```bash
67
- cargo run --release -- --model <MODEL> --source <SOURCE>
68
- ```
69
-
70
- Set `--cuda` to use CUDA execution provider to speed up inference.
71
-
72
- ```bash
73
- cargo run --release -- --cuda --model <MODEL> --source <SOURCE>
74
- ```
75
-
76
- Set `--trt` to use TensorRT execution provider, and you can set `--fp16` at the same time to use TensorRT FP16 engine.
77
-
78
- ```bash
79
- cargo run --release -- --trt --fp16 --model <MODEL> --source <SOURCE>
80
- ```
81
-
82
- Set `--device_id` to select which device to run. When you have only one GPU, and you set `device_id` to 1 will not cause program panic, the `ort` would automatically fall back to `CPU` EP.
83
-
84
- ```bash
85
- cargo run --release -- --cuda --device_id 0 --model <MODEL> --source <SOURCE>
86
- ```
87
-
88
- Set `--batch` to do multi-batch-size inference.
89
-
90
- If you're using `--trt`, you can also set `--batch-min` and `--batch-max` to explicitly specify min/max/opt batch for dynamic batch input.(https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#explicit-shape-range-for-dynamic-shape-input).(Note that the ONNX model should be exported with dynamic shapes.)
91
-
92
- ```bash
93
- cargo run --release -- --cuda --batch 2 --model <MODEL> --source <SOURCE>
94
- ```
95
-
96
- Set `--height` and `--width` to do dynamic image size inference. (Note that the ONNX model should be exported with dynamic shapes.)
97
-
98
- ```bash
99
- cargo run --release -- --cuda --width 480 --height 640 --model <MODEL> --source <SOURCE>
100
- ```
101
-
102
- Set `--profile` to check time consumed in each stage.(Note that the model usually needs to take 1~3 times dry run to warmup. Make sure to run enough times to evaluate the result.)
103
-
104
- ```bash
105
- cargo run --release -- --trt --fp16 --profile --model <MODEL> --source <SOURCE>
106
- ```
107
-
108
- Results: (yolov8m.onnx, batch=1, 3 times, trt, fp16, RTX 3060Ti)
109
-
110
- ```bash
111
- ==> 0
112
- [Model Preprocess]: 12.75788ms
113
- [ORT H2D]: 237.118µs
114
- [ORT Inference]: 507.895469ms
115
- [ORT D2H]: 191.655µs
116
- [Model Inference]: 508.34589ms
117
- [Model Postprocess]: 1.061122ms
118
- ==> 1
119
- [Model Preprocess]: 13.658655ms
120
- [ORT H2D]: 209.975µs
121
- [ORT Inference]: 5.12372ms
122
- [ORT D2H]: 182.389µs
123
- [Model Inference]: 5.530022ms
124
- [Model Postprocess]: 1.04851ms
125
- ==> 2
126
- [Model Preprocess]: 12.475332ms
127
- [ORT H2D]: 246.127µs
128
- [ORT Inference]: 5.048432ms
129
- [ORT D2H]: 187.117µs
130
- [Model Inference]: 5.493119ms
131
- [Model Postprocess]: 1.040906ms
132
- ```
133
-
134
- And also:
135
-
136
- `--conf`: confidence threshold \[default: 0.3\]
137
-
138
- `--iou`: iou threshold in NMS \[default: 0.45\]
139
-
140
- `--kconf`: confidence threshold of keypoint \[default: 0.55\]
141
-
142
- `--plot`: plot inference result with random RGB color and save
143
-
144
- you can check out all CLI arguments by:
145
-
146
- ```bash
147
- git clone https://github.com/ultralytics/ultralytics
148
- cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust
149
- cargo run --release -- --help
150
- ```
151
-
152
- ## Examples
153
-
154
- ![Ultralytics YOLO Tasks](https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png)
155
-
156
- ### Classification
157
-
158
- Running dynamic shape ONNX model on `CPU` with image size `--height 224 --width 224`. Saving plotted image in `runs` directory.
159
-
160
- ```bash
161
- cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile
162
- ```
163
-
164
- You will see result like:
165
-
166
- ```bash
167
- Summary:
168
- > Task: Classify (Ultralytics 8.0.217)
169
- > EP: Cpu
170
- > Dtype: Float32
171
- > Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic)
172
- > nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45
173
-
174
- [Model Preprocess]: 16.363477ms
175
- [ORT H2D]: 50.722µs
176
- [ORT Inference]: 16.295808ms
177
- [ORT D2H]: 8.37µs
178
- [Model Inference]: 16.367046ms
179
- [Model Postprocess]: 3.527µs
180
- [
181
- YOLOResult {
182
- Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]),
183
- Bboxes: None,
184
- Keypoints: None,
185
- Masks: None,
186
- },
187
- ]
188
- ```
189
-
190
- ### Object Detection
191
-
192
- Using `CUDA` EP and dynamic image size `--height 640 --width 480`
193
-
194
- ```bash
195
- cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480
196
- ```
197
-
198
- ### Pose Detection
199
-
200
- using `TensorRT` EP
201
-
202
- ```bash
203
- cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot
204
- ```
205
-
206
- ### Instance Segmentation
207
-
208
- using `TensorRT` EP and FP16 model `--fp16`
209
-
210
- ```bash
211
- cargo run --release -- --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot
212
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/src/cli.rs DELETED
@@ -1,87 +0,0 @@
1
- use clap::Parser;
2
-
3
- use crate::YOLOTask;
4
-
5
- #[derive(Parser, Clone)]
6
- #[command(author, version, about, long_about = None)]
7
- pub struct Args {
8
- /// ONNX model path
9
- #[arg(long, required = true)]
10
- pub model: String,
11
-
12
- /// input path
13
- #[arg(long, required = true)]
14
- pub source: String,
15
-
16
- /// device id
17
- #[arg(long, default_value_t = 0)]
18
- pub device_id: i32,
19
-
20
- /// using TensorRT EP
21
- #[arg(long)]
22
- pub trt: bool,
23
-
24
- /// using CUDA EP
25
- #[arg(long)]
26
- pub cuda: bool,
27
-
28
- /// input batch size
29
- #[arg(long, default_value_t = 1)]
30
- pub batch: u32,
31
-
32
- /// trt input min_batch size
33
- #[arg(long, default_value_t = 1)]
34
- pub batch_min: u32,
35
-
36
- /// trt input max_batch size
37
- #[arg(long, default_value_t = 32)]
38
- pub batch_max: u32,
39
-
40
- /// using TensorRT --fp16
41
- #[arg(long)]
42
- pub fp16: bool,
43
-
44
- /// specify YOLO task
45
- #[arg(long, value_enum)]
46
- pub task: Option<YOLOTask>,
47
-
48
- /// num_classes
49
- #[arg(long)]
50
- pub nc: Option<u32>,
51
-
52
- /// num_keypoints
53
- #[arg(long)]
54
- pub nk: Option<u32>,
55
-
56
- /// num_masks
57
- #[arg(long)]
58
- pub nm: Option<u32>,
59
-
60
- /// input image width
61
- #[arg(long)]
62
- pub width: Option<u32>,
63
-
64
- /// input image height
65
- #[arg(long)]
66
- pub height: Option<u32>,
67
-
68
- /// confidence threshold
69
- #[arg(long, required = false, default_value_t = 0.3)]
70
- pub conf: f32,
71
-
72
- /// iou threshold in NMS
73
- #[arg(long, required = false, default_value_t = 0.45)]
74
- pub iou: f32,
75
-
76
- /// confidence threshold of keypoint
77
- #[arg(long, required = false, default_value_t = 0.55)]
78
- pub kconf: f32,
79
-
80
- /// plot inference result and save
81
- #[arg(long)]
82
- pub plot: bool,
83
-
84
- /// check time consumed in each stage
85
- #[arg(long)]
86
- pub profile: bool,
87
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/src/lib.rs DELETED
@@ -1,160 +0,0 @@
1
- #![allow(clippy::type_complexity)]
2
-
3
- use std::io::{Read, Write};
4
-
5
- pub mod cli;
6
- pub mod model;
7
- pub mod ort_backend;
8
- pub mod yolo_result;
9
- pub use crate::cli::Args;
10
- pub use crate::model::YOLOv8;
11
- pub use crate::ort_backend::{Batch, OrtBackend, OrtConfig, OrtEP, YOLOTask};
12
- pub use crate::yolo_result::{Bbox, Embedding, Point2, YOLOResult};
13
-
14
- pub fn non_max_suppression(
15
- xs: &mut Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)>,
16
- iou_threshold: f32,
17
- ) {
18
- xs.sort_by(|b1, b2| b2.0.confidence().partial_cmp(&b1.0.confidence()).unwrap());
19
-
20
- let mut current_index = 0;
21
- for index in 0..xs.len() {
22
- let mut drop = false;
23
- for prev_index in 0..current_index {
24
- let iou = xs[prev_index].0.iou(&xs[index].0);
25
- if iou > iou_threshold {
26
- drop = true;
27
- break;
28
- }
29
- }
30
- if !drop {
31
- xs.swap(current_index, index);
32
- current_index += 1;
33
- }
34
- }
35
- xs.truncate(current_index);
36
- }
37
-
38
- pub fn gen_time_string(delimiter: &str) -> String {
39
- let offset = chrono::FixedOffset::east_opt(8 * 60 * 60).unwrap(); // Beijing
40
- let t_now = chrono::Utc::now().with_timezone(&offset);
41
- let fmt = format!(
42
- "%Y{}%m{}%d{}%H{}%M{}%S{}%f",
43
- delimiter, delimiter, delimiter, delimiter, delimiter, delimiter
44
- );
45
- t_now.format(&fmt).to_string()
46
- }
47
-
48
- pub const SKELETON: [(usize, usize); 16] = [
49
- (0, 1),
50
- (0, 2),
51
- (1, 3),
52
- (2, 4),
53
- (5, 6),
54
- (5, 11),
55
- (6, 12),
56
- (11, 12),
57
- (5, 7),
58
- (6, 8),
59
- (7, 9),
60
- (8, 10),
61
- (11, 13),
62
- (12, 14),
63
- (13, 15),
64
- (14, 16),
65
- ];
66
-
67
- pub fn check_font(font: &str) -> rusttype::Font<'static> {
68
- // check then load font
69
-
70
- // ultralytics font path
71
- let font_path_config = match dirs::config_dir() {
72
- Some(mut d) => {
73
- d.push("Ultralytics");
74
- d.push(font);
75
- d
76
- }
77
- None => panic!("Unsupported operating system. Now support Linux, MacOS, Windows."),
78
- };
79
-
80
- // current font path
81
- let font_path_current = std::path::PathBuf::from(font);
82
-
83
- // check font
84
- let font_path = if font_path_config.exists() {
85
- font_path_config
86
- } else if font_path_current.exists() {
87
- font_path_current
88
- } else {
89
- println!("Downloading font...");
90
- let source_url = "https://ultralytics.com/assets/Arial.ttf";
91
- let resp = ureq::get(source_url)
92
- .timeout(std::time::Duration::from_secs(500))
93
- .call()
94
- .unwrap_or_else(|err| panic!("> Failed to download font: {source_url}: {err:?}"));
95
-
96
- // read to buffer
97
- let mut buffer = vec![];
98
- let total_size = resp
99
- .header("Content-Length")
100
- .and_then(|s| s.parse::<u64>().ok())
101
- .unwrap();
102
- let _reader = resp
103
- .into_reader()
104
- .take(total_size)
105
- .read_to_end(&mut buffer)
106
- .unwrap();
107
-
108
- // save
109
- let _path = std::fs::File::create(font).unwrap();
110
- let mut writer = std::io::BufWriter::new(_path);
111
- writer.write_all(&buffer).unwrap();
112
- println!("Font saved at: {:?}", font_path_current.display());
113
- font_path_current
114
- };
115
-
116
- // load font
117
- let buffer = std::fs::read(font_path).unwrap();
118
- rusttype::Font::try_from_vec(buffer).unwrap()
119
- }
120
-
121
- use ab_glyph::FontArc;
122
- pub fn load_font() -> FontArc {
123
- use std::path::Path;
124
- let font_path = Path::new("./font/Arial.ttf");
125
- match font_path.try_exists() {
126
- Ok(true) => {
127
- let buffer = std::fs::read(font_path).unwrap();
128
- FontArc::try_from_vec(buffer).unwrap()
129
- }
130
- Ok(false) => {
131
- std::fs::create_dir_all("./font").unwrap();
132
- println!("Downloading font...");
133
- let source_url = "https://ultralytics.com/assets/Arial.ttf";
134
- let resp = ureq::get(source_url)
135
- .timeout(std::time::Duration::from_secs(500))
136
- .call()
137
- .unwrap_or_else(|err| panic!("> Failed to download font: {source_url}: {err:?}"));
138
-
139
- // read to buffer
140
- let mut buffer = vec![];
141
- let total_size = resp
142
- .header("Content-Length")
143
- .and_then(|s| s.parse::<u64>().ok())
144
- .unwrap();
145
- let _reader = resp
146
- .into_reader()
147
- .take(total_size)
148
- .read_to_end(&mut buffer)
149
- .unwrap();
150
- // save
151
- let mut fd = std::fs::File::create(font_path).unwrap();
152
- fd.write_all(&buffer).unwrap();
153
- println!("Font saved at: {:?}", font_path.display());
154
- FontArc::try_from_vec(buffer).unwrap()
155
- }
156
- Err(e) => {
157
- panic!("Failed to load font {}", e);
158
- }
159
- }
160
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/src/main.rs DELETED
@@ -1,28 +0,0 @@
1
- use clap::Parser;
2
-
3
- use yolov8_rs::{Args, YOLOv8};
4
-
5
- fn main() -> Result<(), Box<dyn std::error::Error>> {
6
- let args = Args::parse();
7
-
8
- // 1. load image
9
- let x = image::ImageReader::open(&args.source)?
10
- .with_guessed_format()?
11
- .decode()?;
12
-
13
- // 2. model support dynamic batch inference, so input should be a Vec
14
- let xs = vec![x];
15
-
16
- // You can test `--batch 2` with this
17
- // let xs = vec![x.clone(), x];
18
-
19
- // 3. build yolov8 model
20
- let mut model = YOLOv8::new(args)?;
21
- model.summary(); // model info
22
-
23
- // 4. run
24
- let ys = model.run(&xs)?;
25
- println!("{:?}", ys);
26
-
27
- Ok(())
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/src/model.rs DELETED
@@ -1,651 +0,0 @@
1
- #![allow(clippy::type_complexity)]
2
-
3
- use ab_glyph::FontArc;
4
- use anyhow::Result;
5
- use image::{DynamicImage, GenericImageView, ImageBuffer};
6
- use ndarray::{s, Array, Axis, IxDyn};
7
- use rand::{thread_rng, Rng};
8
- use std::path::PathBuf;
9
-
10
- use crate::{
11
- gen_time_string, load_font, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend,
12
- OrtConfig, OrtEP, Point2, YOLOResult, YOLOTask, SKELETON,
13
- };
14
-
15
- pub struct YOLOv8 {
16
- // YOLOv8 model for all yolo-tasks
17
- engine: OrtBackend,
18
- nc: u32,
19
- nk: u32,
20
- nm: u32,
21
- height: u32,
22
- width: u32,
23
- batch: u32,
24
- task: YOLOTask,
25
- conf: f32,
26
- kconf: f32,
27
- iou: f32,
28
- names: Vec<String>,
29
- color_palette: Vec<(u8, u8, u8)>,
30
- profile: bool,
31
- plot: bool,
32
- }
33
-
34
- impl YOLOv8 {
35
- pub fn new(config: Args) -> Result<Self> {
36
- // execution provider
37
- let ep = if config.trt {
38
- OrtEP::Trt(config.device_id)
39
- } else if config.cuda {
40
- OrtEP::CUDA(config.device_id)
41
- } else {
42
- OrtEP::CPU
43
- };
44
-
45
- // batch
46
- let batch = Batch {
47
- opt: config.batch,
48
- min: config.batch_min,
49
- max: config.batch_max,
50
- };
51
-
52
- // build ort engine
53
- let ort_args = OrtConfig {
54
- ep,
55
- batch,
56
- f: config.model,
57
- task: config.task,
58
- trt_fp16: config.fp16,
59
- image_size: (config.height, config.width),
60
- };
61
- let engine = OrtBackend::build(ort_args)?;
62
-
63
- // get batch, height, width, tasks, nc, nk, nm
64
- let (batch, height, width, task) = (
65
- engine.batch(),
66
- engine.height(),
67
- engine.width(),
68
- engine.task(),
69
- );
70
- let nc = engine.nc().or(config.nc).unwrap_or_else(|| {
71
- panic!("Failed to get num_classes, make it explicit with `--nc`");
72
- });
73
- let (nk, nm) = match task {
74
- YOLOTask::Pose => {
75
- let nk = engine.nk().or(config.nk).unwrap_or_else(|| {
76
- panic!("Failed to get num_keypoints, make it explicit with `--nk`");
77
- });
78
- (nk, 0)
79
- }
80
- YOLOTask::Segment => {
81
- let nm = engine.nm().or(config.nm).unwrap_or_else(|| {
82
- panic!("Failed to get num_masks, make it explicit with `--nm`");
83
- });
84
- (0, nm)
85
- }
86
- _ => (0, 0),
87
- };
88
-
89
- // class names
90
- let names = engine.names().unwrap_or(vec!["Unknown".to_string()]);
91
-
92
- // color palette
93
- let mut rng = thread_rng();
94
- let color_palette: Vec<_> = names
95
- .iter()
96
- .map(|_| {
97
- (
98
- rng.gen_range(0..=255),
99
- rng.gen_range(0..=255),
100
- rng.gen_range(0..=255),
101
- )
102
- })
103
- .collect();
104
-
105
- Ok(Self {
106
- engine,
107
- names,
108
- conf: config.conf,
109
- kconf: config.kconf,
110
- iou: config.iou,
111
- color_palette,
112
- profile: config.profile,
113
- plot: config.plot,
114
- nc,
115
- nk,
116
- nm,
117
- height,
118
- width,
119
- batch,
120
- task,
121
- })
122
- }
123
-
124
- pub fn scale_wh(&self, w0: f32, h0: f32, w1: f32, h1: f32) -> (f32, f32, f32) {
125
- let r = (w1 / w0).min(h1 / h0);
126
- (r, (w0 * r).round(), (h0 * r).round())
127
- }
128
-
129
- pub fn preprocess(&mut self, xs: &Vec<DynamicImage>) -> Result<Array<f32, IxDyn>> {
130
- let mut ys =
131
- Array::ones((xs.len(), 3, self.height() as usize, self.width() as usize)).into_dyn();
132
- ys.fill(144.0 / 255.0);
133
- for (idx, x) in xs.iter().enumerate() {
134
- let img = match self.task() {
135
- YOLOTask::Classify => x.resize_exact(
136
- self.width(),
137
- self.height(),
138
- image::imageops::FilterType::Triangle,
139
- ),
140
- _ => {
141
- let (w0, h0) = x.dimensions();
142
- let w0 = w0 as f32;
143
- let h0 = h0 as f32;
144
- let (_, w_new, h_new) =
145
- self.scale_wh(w0, h0, self.width() as f32, self.height() as f32); // f32 round
146
- x.resize_exact(
147
- w_new as u32,
148
- h_new as u32,
149
- if let YOLOTask::Segment = self.task() {
150
- image::imageops::FilterType::CatmullRom
151
- } else {
152
- image::imageops::FilterType::Triangle
153
- },
154
- )
155
- }
156
- };
157
-
158
- for (x, y, rgb) in img.pixels() {
159
- let x = x as usize;
160
- let y = y as usize;
161
- let [r, g, b, _] = rgb.0;
162
- ys[[idx, 0, y, x]] = (r as f32) / 255.0;
163
- ys[[idx, 1, y, x]] = (g as f32) / 255.0;
164
- ys[[idx, 2, y, x]] = (b as f32) / 255.0;
165
- }
166
- }
167
-
168
- Ok(ys)
169
- }
170
-
171
- pub fn run(&mut self, xs: &Vec<DynamicImage>) -> Result<Vec<YOLOResult>> {
172
- // pre-process
173
- let t_pre = std::time::Instant::now();
174
- let xs_ = self.preprocess(xs)?;
175
- if self.profile {
176
- println!("[Model Preprocess]: {:?}", t_pre.elapsed());
177
- }
178
-
179
- // run
180
- let t_run = std::time::Instant::now();
181
- let ys = self.engine.run(xs_, self.profile)?;
182
- if self.profile {
183
- println!("[Model Inference]: {:?}", t_run.elapsed());
184
- }
185
-
186
- // post-process
187
- let t_post = std::time::Instant::now();
188
- let ys = self.postprocess(ys, xs)?;
189
- if self.profile {
190
- println!("[Model Postprocess]: {:?}", t_post.elapsed());
191
- }
192
-
193
- // plot and save
194
- if self.plot {
195
- self.plot_and_save(&ys, xs, Some(&SKELETON));
196
- }
197
- Ok(ys)
198
- }
199
-
200
- pub fn postprocess(
201
- &self,
202
- xs: Vec<Array<f32, IxDyn>>,
203
- xs0: &[DynamicImage],
204
- ) -> Result<Vec<YOLOResult>> {
205
- if let YOLOTask::Classify = self.task() {
206
- let mut ys = Vec::new();
207
- let preds = &xs[0];
208
- for batch in preds.axis_iter(Axis(0)) {
209
- ys.push(YOLOResult::new(
210
- Some(Embedding::new(batch.into_owned())),
211
- None,
212
- None,
213
- None,
214
- ));
215
- }
216
- Ok(ys)
217
- } else {
218
- const CXYWH_OFFSET: usize = 4; // cxcywh
219
- const KPT_STEP: usize = 3; // xyconf
220
- let preds = &xs[0];
221
- let protos = {
222
- if xs.len() > 1 {
223
- Some(&xs[1])
224
- } else {
225
- None
226
- }
227
- };
228
- let mut ys = Vec::new();
229
- for (idx, anchor) in preds.axis_iter(Axis(0)).enumerate() {
230
- // [bs, 4 + nc + nm, anchors]
231
- // input image
232
- let width_original = xs0[idx].width() as f32;
233
- let height_original = xs0[idx].height() as f32;
234
- let ratio = (self.width() as f32 / width_original)
235
- .min(self.height() as f32 / height_original);
236
-
237
- // save each result
238
- let mut data: Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)> = Vec::new();
239
- for pred in anchor.axis_iter(Axis(1)) {
240
- // split preds for different tasks
241
- let bbox = pred.slice(s![0..CXYWH_OFFSET]);
242
- let clss = pred.slice(s![CXYWH_OFFSET..CXYWH_OFFSET + self.nc() as usize]);
243
- let kpts = {
244
- if let YOLOTask::Pose = self.task() {
245
- Some(pred.slice(s![pred.len() - KPT_STEP * self.nk() as usize..]))
246
- } else {
247
- None
248
- }
249
- };
250
- let coefs = {
251
- if let YOLOTask::Segment = self.task() {
252
- Some(pred.slice(s![pred.len() - self.nm() as usize..]).to_vec())
253
- } else {
254
- None
255
- }
256
- };
257
-
258
- // confidence and id
259
- let (id, &confidence) = clss
260
- .into_iter()
261
- .enumerate()
262
- .reduce(|max, x| if x.1 > max.1 { x } else { max })
263
- .unwrap(); // definitely will not panic!
264
-
265
- // confidence filter
266
- if confidence < self.conf {
267
- continue;
268
- }
269
-
270
- // bbox re-scale
271
- let cx = bbox[0] / ratio;
272
- let cy = bbox[1] / ratio;
273
- let w = bbox[2] / ratio;
274
- let h = bbox[3] / ratio;
275
- let x = cx - w / 2.;
276
- let y = cy - h / 2.;
277
- let y_bbox = Bbox::new(
278
- x.max(0.0f32).min(width_original),
279
- y.max(0.0f32).min(height_original),
280
- w,
281
- h,
282
- id,
283
- confidence,
284
- );
285
-
286
- // kpts
287
- let y_kpts = {
288
- if let Some(kpts) = kpts {
289
- let mut kpts_ = Vec::new();
290
- // rescale
291
- for i in 0..self.nk() as usize {
292
- let kx = kpts[KPT_STEP * i] / ratio;
293
- let ky = kpts[KPT_STEP * i + 1] / ratio;
294
- let kconf = kpts[KPT_STEP * i + 2];
295
- if kconf < self.kconf {
296
- kpts_.push(Point2::default());
297
- } else {
298
- kpts_.push(Point2::new_with_conf(
299
- kx.max(0.0f32).min(width_original),
300
- ky.max(0.0f32).min(height_original),
301
- kconf,
302
- ));
303
- }
304
- }
305
- Some(kpts_)
306
- } else {
307
- None
308
- }
309
- };
310
-
311
- // data merged
312
- data.push((y_bbox, y_kpts, coefs));
313
- }
314
-
315
- // nms
316
- non_max_suppression(&mut data, self.iou);
317
-
318
- // decode
319
- let mut y_bboxes: Vec<Bbox> = Vec::new();
320
- let mut y_kpts: Vec<Vec<Point2>> = Vec::new();
321
- let mut y_masks: Vec<Vec<u8>> = Vec::new();
322
- for elem in data.into_iter() {
323
- if let Some(kpts) = elem.1 {
324
- y_kpts.push(kpts)
325
- }
326
-
327
- // decode masks
328
- if let Some(coefs) = elem.2 {
329
- let proto = protos.unwrap().slice(s![idx, .., .., ..]);
330
- let (nm, nh, nw) = proto.dim();
331
-
332
- // coefs * proto -> mask
333
- let coefs = Array::from_shape_vec((1, nm), coefs)?; // (n, nm)
334
-
335
- let proto = proto.to_owned();
336
- let proto = proto.to_shape((nm, nh * nw))?; // (nm, nh*nw)
337
- let mask = coefs.dot(&proto); // (nh, nw, n)
338
- let mask = mask.to_shape((nh, nw, 1))?;
339
-
340
- // build image from ndarray
341
- let mask_im: ImageBuffer<image::Luma<_>, Vec<f32>> =
342
- match ImageBuffer::from_raw(
343
- nw as u32,
344
- nh as u32,
345
- mask.to_owned().into_raw_vec_and_offset().0,
346
- ) {
347
- Some(image) => image,
348
- None => panic!("can not create image from ndarray"),
349
- };
350
- let mut mask_im = image::DynamicImage::from(mask_im); // -> dyn
351
-
352
- // rescale masks
353
- let (_, w_mask, h_mask) =
354
- self.scale_wh(width_original, height_original, nw as f32, nh as f32);
355
- let mask_cropped = mask_im.crop(0, 0, w_mask as u32, h_mask as u32);
356
- let mask_original = mask_cropped.resize_exact(
357
- // resize_to_fill
358
- width_original as u32,
359
- height_original as u32,
360
- match self.task() {
361
- YOLOTask::Segment => image::imageops::FilterType::CatmullRom,
362
- _ => image::imageops::FilterType::Triangle,
363
- },
364
- );
365
-
366
- // crop-mask with bbox
367
- let mut mask_original_cropped = mask_original.into_luma8();
368
- for y in 0..height_original as usize {
369
- for x in 0..width_original as usize {
370
- if x < elem.0.xmin() as usize
371
- || x > elem.0.xmax() as usize
372
- || y < elem.0.ymin() as usize
373
- || y > elem.0.ymax() as usize
374
- {
375
- mask_original_cropped.put_pixel(
376
- x as u32,
377
- y as u32,
378
- image::Luma([0u8]),
379
- );
380
- }
381
- }
382
- }
383
- y_masks.push(mask_original_cropped.into_raw());
384
- }
385
- y_bboxes.push(elem.0);
386
- }
387
-
388
- // save each result
389
- let y = YOLOResult {
390
- probs: None,
391
- bboxes: if !y_bboxes.is_empty() {
392
- Some(y_bboxes)
393
- } else {
394
- None
395
- },
396
- keypoints: if !y_kpts.is_empty() {
397
- Some(y_kpts)
398
- } else {
399
- None
400
- },
401
- masks: if !y_masks.is_empty() {
402
- Some(y_masks)
403
- } else {
404
- None
405
- },
406
- };
407
- ys.push(y);
408
- }
409
-
410
- Ok(ys)
411
- }
412
- }
413
-
414
- pub fn plot_and_save(
415
- &self,
416
- ys: &[YOLOResult],
417
- xs0: &[DynamicImage],
418
- skeletons: Option<&[(usize, usize)]>,
419
- ) {
420
- // check font then load
421
- let font: FontArc = load_font();
422
- for (_idb, (img0, y)) in xs0.iter().zip(ys.iter()).enumerate() {
423
- let mut img = img0.to_rgb8();
424
-
425
- // draw for classifier
426
- if let Some(probs) = y.probs() {
427
- for (i, k) in probs.topk(5).iter().enumerate() {
428
- let legend = format!("{} {:.2}%", self.names[k.0], k.1);
429
- let scale = 32;
430
- let legend_size = img.width().max(img.height()) / scale;
431
- let x = img.width() / 20;
432
- let y = img.height() / 20 + i as u32 * legend_size;
433
-
434
- imageproc::drawing::draw_text_mut(
435
- &mut img,
436
- image::Rgb([0, 255, 0]),
437
- x as i32,
438
- y as i32,
439
- legend_size as f32,
440
- &font,
441
- &legend,
442
- );
443
- }
444
- }
445
-
446
- // draw bboxes & keypoints
447
- if let Some(bboxes) = y.bboxes() {
448
- for (_idx, bbox) in bboxes.iter().enumerate() {
449
- // rect
450
- imageproc::drawing::draw_hollow_rect_mut(
451
- &mut img,
452
- imageproc::rect::Rect::at(bbox.xmin() as i32, bbox.ymin() as i32)
453
- .of_size(bbox.width() as u32, bbox.height() as u32),
454
- image::Rgb(self.color_palette[bbox.id()].into()),
455
- );
456
-
457
- // text
458
- let legend = format!("{} {:.2}%", self.names[bbox.id()], bbox.confidence());
459
- let scale = 40;
460
- let legend_size = img.width().max(img.height()) / scale;
461
- imageproc::drawing::draw_text_mut(
462
- &mut img,
463
- image::Rgb(self.color_palette[bbox.id()].into()),
464
- bbox.xmin() as i32,
465
- (bbox.ymin() - legend_size as f32) as i32,
466
- legend_size as f32,
467
- &font,
468
- &legend,
469
- );
470
- }
471
- }
472
-
473
- // draw kpts
474
- if let Some(keypoints) = y.keypoints() {
475
- for kpts in keypoints.iter() {
476
- for kpt in kpts.iter() {
477
- // filter
478
- if kpt.confidence() < self.kconf {
479
- continue;
480
- }
481
-
482
- // draw point
483
- imageproc::drawing::draw_filled_circle_mut(
484
- &mut img,
485
- (kpt.x() as i32, kpt.y() as i32),
486
- 2,
487
- image::Rgb([0, 255, 0]),
488
- );
489
- }
490
-
491
- // draw skeleton if has
492
- if let Some(skeletons) = skeletons {
493
- for &(idx1, idx2) in skeletons.iter() {
494
- let kpt1 = &kpts[idx1];
495
- let kpt2 = &kpts[idx2];
496
- if kpt1.confidence() < self.kconf || kpt2.confidence() < self.kconf {
497
- continue;
498
- }
499
- imageproc::drawing::draw_line_segment_mut(
500
- &mut img,
501
- (kpt1.x(), kpt1.y()),
502
- (kpt2.x(), kpt2.y()),
503
- image::Rgb([233, 14, 57]),
504
- );
505
- }
506
- }
507
- }
508
- }
509
-
510
- // draw mask
511
- if let Some(masks) = y.masks() {
512
- for (mask, _bbox) in masks.iter().zip(y.bboxes().unwrap().iter()) {
513
- let mask_nd: ImageBuffer<image::Luma<_>, Vec<u8>> =
514
- match ImageBuffer::from_vec(img.width(), img.height(), mask.to_vec()) {
515
- Some(image) => image,
516
- None => panic!("can not crate image from ndarray"),
517
- };
518
-
519
- for _x in 0..img.width() {
520
- for _y in 0..img.height() {
521
- let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_nd, _x, _y);
522
- if mask_p.0[0] > 0 {
523
- let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, _x, _y);
524
- // img_p.0[2] = self.color_palette[bbox.id()].2 / 2;
525
- // img_p.0[1] = self.color_palette[bbox.id()].1 / 2;
526
- // img_p.0[0] = self.color_palette[bbox.id()].0 / 2;
527
- img_p.0[2] /= 2;
528
- img_p.0[1] = 255 - (255 - img_p.0[2]) / 2;
529
- img_p.0[0] /= 2;
530
- imageproc::drawing::Canvas::draw_pixel(&mut img, _x, _y, img_p)
531
- }
532
- }
533
- }
534
- }
535
- }
536
-
537
- // mkdir and save
538
- let mut runs = PathBuf::from("runs");
539
- if !runs.exists() {
540
- std::fs::create_dir_all(&runs).unwrap();
541
- }
542
- runs.push(gen_time_string("-"));
543
- let saveout = format!("{}.jpg", runs.to_str().unwrap());
544
- let _ = img.save(saveout);
545
- }
546
- }
547
-
548
- pub fn summary(&self) {
549
- println!(
550
- "\nSummary:\n\
551
- > Task: {:?}{}\n\
552
- > EP: {:?} {}\n\
553
- > Dtype: {:?}\n\
554
- > Batch: {} ({}), Height: {} ({}), Width: {} ({})\n\
555
- > nc: {} nk: {}, nm: {}, conf: {}, kconf: {}, iou: {}\n\
556
- ",
557
- self.task(),
558
- match self.engine.author().zip(self.engine.version()) {
559
- Some((author, ver)) => format!(" ({} {})", author, ver),
560
- None => String::from(""),
561
- },
562
- self.engine.ep(),
563
- if let OrtEP::CPU = self.engine.ep() {
564
- ""
565
- } else {
566
- "(May still fall back to CPU)"
567
- },
568
- self.engine.dtype(),
569
- self.batch(),
570
- if self.engine.is_batch_dynamic() {
571
- "Dynamic"
572
- } else {
573
- "Const"
574
- },
575
- self.height(),
576
- if self.engine.is_height_dynamic() {
577
- "Dynamic"
578
- } else {
579
- "Const"
580
- },
581
- self.width(),
582
- if self.engine.is_width_dynamic() {
583
- "Dynamic"
584
- } else {
585
- "Const"
586
- },
587
- self.nc(),
588
- self.nk(),
589
- self.nm(),
590
- self.conf,
591
- self.kconf,
592
- self.iou,
593
- );
594
- }
595
-
596
- pub fn engine(&self) -> &OrtBackend {
597
- &self.engine
598
- }
599
-
600
- pub fn conf(&self) -> f32 {
601
- self.conf
602
- }
603
-
604
- pub fn set_conf(&mut self, val: f32) {
605
- self.conf = val;
606
- }
607
-
608
- pub fn conf_mut(&mut self) -> &mut f32 {
609
- &mut self.conf
610
- }
611
-
612
- pub fn kconf(&self) -> f32 {
613
- self.kconf
614
- }
615
-
616
- pub fn iou(&self) -> f32 {
617
- self.iou
618
- }
619
-
620
- pub fn task(&self) -> &YOLOTask {
621
- &self.task
622
- }
623
-
624
- pub fn batch(&self) -> u32 {
625
- self.batch
626
- }
627
-
628
- pub fn width(&self) -> u32 {
629
- self.width
630
- }
631
-
632
- pub fn height(&self) -> u32 {
633
- self.height
634
- }
635
-
636
- pub fn nc(&self) -> u32 {
637
- self.nc
638
- }
639
-
640
- pub fn nk(&self) -> u32 {
641
- self.nk
642
- }
643
-
644
- pub fn nm(&self) -> u32 {
645
- self.nm
646
- }
647
-
648
- pub fn names(&self) -> &Vec<String> {
649
- &self.names
650
- }
651
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs DELETED
@@ -1,553 +0,0 @@
1
- use anyhow::Result;
2
- use clap::ValueEnum;
3
- use half::f16;
4
- use ndarray::{Array, CowArray, IxDyn};
5
- use ort::{
6
- CPUExecutionProvider, CUDAExecutionProvider, ExecutionProvider, ExecutionProviderDispatch,
7
- TensorRTExecutionProvider,
8
- };
9
- use ort::{Session, SessionBuilder};
10
- use ort::{TensorElementType, ValueType};
11
- use regex::Regex;
12
- #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
13
- pub enum YOLOTask {
14
- // YOLO tasks
15
- Classify,
16
- Detect,
17
- Pose,
18
- Segment,
19
- }
20
-
21
- #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
22
- pub enum OrtEP {
23
- // ONNXRuntime execution provider
24
- CPU,
25
- CUDA(i32),
26
- Trt(i32),
27
- }
28
-
29
- #[derive(Debug)]
30
- pub struct Batch {
31
- pub opt: u32,
32
- pub min: u32,
33
- pub max: u32,
34
- }
35
-
36
- impl Default for Batch {
37
- fn default() -> Self {
38
- Self {
39
- opt: 1,
40
- min: 1,
41
- max: 1,
42
- }
43
- }
44
- }
45
-
46
- #[derive(Debug, Default)]
47
- pub struct OrtInputs {
48
- // ONNX model inputs attrs
49
- pub shapes: Vec<Vec<i64>>,
50
- //pub dtypes: Vec<TensorElementDataType>,
51
- pub dtypes: Vec<TensorElementType>,
52
- pub names: Vec<String>,
53
- pub sizes: Vec<Vec<u32>>,
54
- }
55
-
56
- impl OrtInputs {
57
- pub fn new(session: &Session) -> Self {
58
- let mut shapes = Vec::new();
59
- let mut dtypes = Vec::new();
60
- let mut names = Vec::new();
61
- for i in session.inputs.iter() {
62
- /* let shape: Vec<i32> = i
63
- .dimensions()
64
- .map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
65
- .collect();
66
- shapes.push(shape); */
67
- if let ort::ValueType::Tensor { ty, dimensions } = &i.input_type {
68
- dtypes.push(ty.clone());
69
- let shape = dimensions.clone();
70
- shapes.push(shape);
71
- } else {
72
- panic!("不支持的数据格式, {} - {}", file!(), line!());
73
- }
74
- //dtypes.push(i.input_type);
75
- names.push(i.name.clone());
76
- }
77
- Self {
78
- shapes,
79
- dtypes,
80
- names,
81
- ..Default::default()
82
- }
83
- }
84
- }
85
-
86
- #[derive(Debug)]
87
- pub struct OrtConfig {
88
- // ORT config
89
- pub f: String,
90
- pub task: Option<YOLOTask>,
91
- pub ep: OrtEP,
92
- pub trt_fp16: bool,
93
- pub batch: Batch,
94
- pub image_size: (Option<u32>, Option<u32>),
95
- }
96
-
97
- #[derive(Debug)]
98
- pub struct OrtBackend {
99
- // ORT engine
100
- session: Session,
101
- task: YOLOTask,
102
- ep: OrtEP,
103
- batch: Batch,
104
- inputs: OrtInputs,
105
- }
106
-
107
- impl OrtBackend {
108
- pub fn build(args: OrtConfig) -> Result<Self> {
109
- // build env & session
110
- // in version 2.x environment is removed
111
- /* let env = ort::EnvironmentBuilder
112
- ::with_name("YOLOv8")
113
- .build()?
114
- .into_arc(); */
115
- let sessionbuilder = SessionBuilder::new()?;
116
- let session = sessionbuilder.commit_from_file(&args.f)?;
117
- //let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
118
-
119
- // get inputs
120
- let mut inputs = OrtInputs::new(&session);
121
-
122
- // batch size
123
- let mut batch = args.batch;
124
- let batch = if inputs.shapes[0][0] == -1 {
125
- batch
126
- } else {
127
- assert_eq!(
128
- inputs.shapes[0][0] as u32, batch.opt,
129
- "Expected batch size: {}, got {}. Try using `--batch {}`.",
130
- inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32
131
- );
132
- batch.opt = inputs.shapes[0][0] as u32;
133
- batch
134
- };
135
-
136
- // input size: height and width
137
- let height = if inputs.shapes[0][2] == -1 {
138
- match args.image_size.0 {
139
- Some(height) => height,
140
- None => panic!("Failed to get model height. Make it explicit with `--height`"),
141
- }
142
- } else {
143
- inputs.shapes[0][2] as u32
144
- };
145
- let width = if inputs.shapes[0][3] == -1 {
146
- match args.image_size.1 {
147
- Some(width) => width,
148
- None => panic!("Failed to get model width. Make it explicit with `--width`"),
149
- }
150
- } else {
151
- inputs.shapes[0][3] as u32
152
- };
153
- inputs.sizes.push(vec![height, width]);
154
-
155
- // build provider
156
- let (ep, provider) = match args.ep {
157
- OrtEP::CUDA(device_id) => Self::set_ep_cuda(device_id),
158
- OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
159
- _ => (
160
- OrtEP::CPU,
161
- ExecutionProviderDispatch::from(CPUExecutionProvider::default()),
162
- ),
163
- };
164
-
165
- // build session again with the new provider
166
- let session = SessionBuilder::new()?
167
- // .with_optimization_level(ort::GraphOptimizationLevel::Level3)?
168
- .with_execution_providers([provider])?
169
- .commit_from_file(args.f)?;
170
-
171
- // task: using given one or guessing
172
- let task = match args.task {
173
- Some(task) => task,
174
- None => match session.metadata() {
175
- Err(_) => panic!("No metadata found. Try making it explicit by `--task`"),
176
- Ok(metadata) => match metadata.custom("task") {
177
- Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"),
178
- Ok(value) => match value {
179
- None => panic!("No corresponding value of `task` found in metadata. Make it explicit by `--task`"),
180
- Some(task) => match task.as_str() {
181
- "classify" => YOLOTask::Classify,
182
- "detect" => YOLOTask::Detect,
183
- "pose" => YOLOTask::Pose,
184
- "segment" => YOLOTask::Segment,
185
- x => todo!("{:?} is not supported for now!", x),
186
- },
187
- },
188
- },
189
- },
190
- };
191
-
192
- Ok(Self {
193
- session,
194
- task,
195
- ep,
196
- batch,
197
- inputs,
198
- })
199
- }
200
-
201
- pub fn fetch_inputs_from_session(
202
- session: &Session,
203
- ) -> (Vec<Vec<i64>>, Vec<TensorElementType>, Vec<String>) {
204
- // get inputs attrs from ONNX model
205
- let mut shapes = Vec::new();
206
- let mut dtypes = Vec::new();
207
- let mut names = Vec::new();
208
- for i in session.inputs.iter() {
209
- if let ort::ValueType::Tensor { ty, dimensions } = &i.input_type {
210
- dtypes.push(ty.clone());
211
- let shape = dimensions.clone();
212
- shapes.push(shape);
213
- } else {
214
- panic!("不支持的数据格式, {} - {}", file!(), line!());
215
- }
216
- names.push(i.name.clone());
217
- }
218
- (shapes, dtypes, names)
219
- }
220
-
221
- pub fn set_ep_cuda(device_id: i32) -> (OrtEP, ExecutionProviderDispatch) {
222
- let cuda_provider = CUDAExecutionProvider::default().with_device_id(device_id);
223
- if let Ok(true) = cuda_provider.is_available() {
224
- (
225
- OrtEP::CUDA(device_id),
226
- ExecutionProviderDispatch::from(cuda_provider), //PlantForm::CUDA(cuda_provider)
227
- )
228
- } else {
229
- println!("> CUDA is not available! Using CPU.");
230
- (
231
- OrtEP::CPU,
232
- ExecutionProviderDispatch::from(CPUExecutionProvider::default()), //PlantForm::CPU(CPUExecutionProvider::default())
233
- )
234
- }
235
- }
236
-
237
- pub fn set_ep_trt(
238
- device_id: i32,
239
- fp16: bool,
240
- batch: &Batch,
241
- inputs: &OrtInputs,
242
- ) -> (OrtEP, ExecutionProviderDispatch) {
243
- // set TensorRT
244
- let trt_provider = TensorRTExecutionProvider::default().with_device_id(device_id);
245
-
246
- //trt_provider.
247
- if let Ok(true) = trt_provider.is_available() {
248
- let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
249
- if inputs.dtypes[0] == TensorElementType::Float16 && !fp16 {
250
- panic!(
251
- "Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
252
- inputs.dtypes[0]
253
- );
254
- }
255
- // dynamic shape: input_tensor_1:dim_1xdim_2x...,input_tensor_2:dim_3xdim_4x...,...
256
- let mut opt_string = String::new();
257
- let mut min_string = String::new();
258
- let mut max_string = String::new();
259
- for name in inputs.names.iter() {
260
- let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width);
261
- let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width);
262
- let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width);
263
- opt_string.push_str(s_opt.as_str());
264
- min_string.push_str(s_min.as_str());
265
- max_string.push_str(s_max.as_str());
266
- }
267
- let _ = opt_string.pop();
268
- let _ = min_string.pop();
269
- let _ = max_string.pop();
270
-
271
- let trt_provider = trt_provider
272
- .with_profile_opt_shapes(opt_string)
273
- .with_profile_min_shapes(min_string)
274
- .with_profile_max_shapes(max_string)
275
- .with_fp16(fp16)
276
- .with_timing_cache(true);
277
- (
278
- OrtEP::Trt(device_id),
279
- ExecutionProviderDispatch::from(trt_provider),
280
- )
281
- } else {
282
- println!("> TensorRT is not available! Try using CUDA...");
283
- Self::set_ep_cuda(device_id)
284
- }
285
- }
286
-
287
- pub fn fetch_from_metadata(&self, key: &str) -> Option<String> {
288
- // fetch value from onnx model file by key
289
- match self.session.metadata() {
290
- Err(_) => None,
291
- Ok(metadata) => match metadata.custom(key) {
292
- Err(_) => None,
293
- Ok(value) => value,
294
- },
295
- }
296
- }
297
-
298
- pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
299
- // ORT inference
300
- match self.dtype() {
301
- TensorElementType::Float16 => self.run_fp16(xs, profile),
302
- TensorElementType::Float32 => self.run_fp32(xs, profile),
303
- _ => todo!(),
304
- }
305
- }
306
-
307
- pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
308
- // f32->f16
309
- let t = std::time::Instant::now();
310
- let xs = xs.mapv(f16::from_f32);
311
- if profile {
312
- println!("[ORT f32->f16]: {:?}", t.elapsed());
313
- }
314
-
315
- // h2d
316
- let t = std::time::Instant::now();
317
- let xs = CowArray::from(xs);
318
- if profile {
319
- println!("[ORT H2D]: {:?}", t.elapsed());
320
- }
321
-
322
- // run
323
- let t = std::time::Instant::now();
324
- let ys = self.session.run(ort::inputs![xs.view()]?)?;
325
- if profile {
326
- println!("[ORT Inference]: {:?}", t.elapsed());
327
- }
328
-
329
- // d2h
330
- Ok(ys
331
- .iter()
332
- .map(|(_k, v)| {
333
- // d2h
334
- let t = std::time::Instant::now();
335
- let v = v.try_extract_tensor().unwrap();
336
- //let v = v.try_extract::<_>().unwrap().view().clone().into_owned();
337
- if profile {
338
- println!("[ORT D2H]: {:?}", t.elapsed());
339
- }
340
-
341
- // f16->f32
342
- let t_ = std::time::Instant::now();
343
- let v = v.mapv(f16::to_f32);
344
- if profile {
345
- println!("[ORT f16->f32]: {:?}", t_.elapsed());
346
- }
347
- v
348
- })
349
- .collect::<Vec<Array<_, _>>>())
350
- }
351
-
352
- pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
353
- // h2d
354
- let t = std::time::Instant::now();
355
- let xs = CowArray::from(xs);
356
- if profile {
357
- println!("[ORT H2D]: {:?}", t.elapsed());
358
- }
359
-
360
- // run
361
- let t = std::time::Instant::now();
362
- let ys = self.session.run(ort::inputs![xs.view()]?)?;
363
- if profile {
364
- println!("[ORT Inference]: {:?}", t.elapsed());
365
- }
366
-
367
- // d2h
368
- Ok(ys
369
- .iter()
370
- .map(|(_k, v)| {
371
- let t = std::time::Instant::now();
372
- let v = v.try_extract_tensor::<f32>().unwrap().into_owned();
373
- //let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
374
- if profile {
375
- println!("[ORT D2H]: {:?}", t.elapsed());
376
- }
377
- v
378
- })
379
- .collect::<Vec<Array<_, _>>>())
380
- }
381
-
382
- pub fn output_shapes(&self) -> Vec<Vec<i64>> {
383
- let mut shapes = Vec::new();
384
- for output in &self.session.outputs {
385
- if let ValueType::Tensor { ty: _, dimensions } = &output.output_type {
386
- let shape = dimensions.clone();
387
- shapes.push(shape);
388
- } else {
389
- panic!("not support data format, {} - {}", file!(), line!());
390
- }
391
- }
392
- shapes
393
- }
394
-
395
- pub fn output_dtypes(&self) -> Vec<TensorElementType> {
396
- let mut dtypes = Vec::new();
397
- for output in &self.session.outputs {
398
- if let ValueType::Tensor { ty, dimensions: _ } = &output.output_type {
399
- dtypes.push(ty.clone());
400
- } else {
401
- panic!("not support data format, {} - {}", file!(), line!());
402
- }
403
- }
404
- dtypes
405
- }
406
-
407
- pub fn input_shapes(&self) -> &Vec<Vec<i64>> {
408
- &self.inputs.shapes
409
- }
410
-
411
- pub fn input_names(&self) -> &Vec<String> {
412
- &self.inputs.names
413
- }
414
-
415
- pub fn input_dtypes(&self) -> &Vec<TensorElementType> {
416
- &self.inputs.dtypes
417
- }
418
-
419
- pub fn dtype(&self) -> TensorElementType {
420
- self.input_dtypes()[0]
421
- }
422
-
423
- pub fn height(&self) -> u32 {
424
- self.inputs.sizes[0][0]
425
- }
426
-
427
- pub fn width(&self) -> u32 {
428
- self.inputs.sizes[0][1]
429
- }
430
-
431
- pub fn is_height_dynamic(&self) -> bool {
432
- self.input_shapes()[0][2] == -1
433
- }
434
-
435
- pub fn is_width_dynamic(&self) -> bool {
436
- self.input_shapes()[0][3] == -1
437
- }
438
-
439
- pub fn batch(&self) -> u32 {
440
- self.batch.opt
441
- }
442
-
443
- pub fn is_batch_dynamic(&self) -> bool {
444
- self.input_shapes()[0][0] == -1
445
- }
446
-
447
- pub fn ep(&self) -> &OrtEP {
448
- &self.ep
449
- }
450
-
451
- pub fn task(&self) -> YOLOTask {
452
- self.task.clone()
453
- }
454
-
455
- pub fn names(&self) -> Option<Vec<String>> {
456
- // class names, metadata parsing
457
- // String format: `{0: 'person', 1: 'bicycle', 2: 'sports ball', ..., 27: "yellow_lady's_slipper"}`
458
- match self.fetch_from_metadata("names") {
459
- Some(names) => {
460
- let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap();
461
- let mut names_ = vec![];
462
- for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) {
463
- names_.push(name.to_string());
464
- }
465
- Some(names_)
466
- }
467
- None => None,
468
- }
469
- }
470
-
471
- pub fn nk(&self) -> Option<u32> {
472
- // num_keypoints, metadata parsing: String `nk` in onnx model: `[17, 3]`
473
- match self.fetch_from_metadata("kpt_shape") {
474
- None => None,
475
- Some(kpt_string) => {
476
- let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap();
477
- let caps = re.captures(&kpt_string).unwrap();
478
- Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap())
479
- }
480
- }
481
- }
482
-
483
- pub fn nc(&self) -> Option<u32> {
484
- // num_classes
485
- match self.names() {
486
- // by names
487
- Some(names) => Some(names.len() as u32),
488
- None => match self.task() {
489
- // by task calculation
490
- YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32),
491
- YOLOTask::Detect => {
492
- if self.output_shapes()[0][1] == -1 {
493
- None
494
- } else {
495
- // cxywhclss
496
- Some(self.output_shapes()[0][1] as u32 - 4)
497
- }
498
- }
499
- YOLOTask::Pose => {
500
- match self.nk() {
501
- None => None,
502
- Some(nk) => {
503
- if self.output_shapes()[0][1] == -1 {
504
- None
505
- } else {
506
- // cxywhclss3*kpt
507
- Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk)
508
- }
509
- }
510
- }
511
- }
512
- YOLOTask::Segment => {
513
- if self.output_shapes()[0][1] == -1 {
514
- None
515
- } else {
516
- // cxywhclssnm
517
- Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4)
518
- }
519
- }
520
- },
521
- }
522
- }
523
-
524
- pub fn nm(&self) -> Option<u32> {
525
- // num_masks
526
- match self.task() {
527
- YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32),
528
- _ => None,
529
- }
530
- }
531
-
532
- pub fn na(&self) -> Option<u32> {
533
- // num_anchors
534
- match self.task() {
535
- YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => {
536
- if self.output_shapes()[0][2] == -1 {
537
- None
538
- } else {
539
- Some(self.output_shapes()[0][2] as u32)
540
- }
541
- }
542
- _ => None,
543
- }
544
- }
545
-
546
- pub fn author(&self) -> Option<String> {
547
- self.fetch_from_metadata("author")
548
- }
549
-
550
- pub fn version(&self) -> Option<String> {
551
- self.fetch_from_metadata("version")
552
- }
553
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime-Rust/src/yolo_result.rs DELETED
@@ -1,235 +0,0 @@
1
- use ndarray::{Array, Axis, IxDyn};
2
-
3
- #[derive(Clone, PartialEq, Default)]
4
- pub struct YOLOResult {
5
- // YOLO tasks results of an image
6
- pub probs: Option<Embedding>,
7
- pub bboxes: Option<Vec<Bbox>>,
8
- pub keypoints: Option<Vec<Vec<Point2>>>,
9
- pub masks: Option<Vec<Vec<u8>>>,
10
- }
11
-
12
- impl std::fmt::Debug for YOLOResult {
13
- fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
14
- f.debug_struct("YOLOResult")
15
- .field(
16
- "Probs(top5)",
17
- &format_args!("{:?}", self.probs().map(|probs| probs.topk(5))),
18
- )
19
- .field("Bboxes", &self.bboxes)
20
- .field("Keypoints", &self.keypoints)
21
- .field(
22
- "Masks",
23
- &format_args!("{:?}", self.masks().map(|masks| masks.len())),
24
- )
25
- .finish()
26
- }
27
- }
28
-
29
- impl YOLOResult {
30
- pub fn new(
31
- probs: Option<Embedding>,
32
- bboxes: Option<Vec<Bbox>>,
33
- keypoints: Option<Vec<Vec<Point2>>>,
34
- masks: Option<Vec<Vec<u8>>>,
35
- ) -> Self {
36
- Self {
37
- probs,
38
- bboxes,
39
- keypoints,
40
- masks,
41
- }
42
- }
43
-
44
- pub fn probs(&self) -> Option<&Embedding> {
45
- self.probs.as_ref()
46
- }
47
-
48
- pub fn keypoints(&self) -> Option<&Vec<Vec<Point2>>> {
49
- self.keypoints.as_ref()
50
- }
51
-
52
- pub fn masks(&self) -> Option<&Vec<Vec<u8>>> {
53
- self.masks.as_ref()
54
- }
55
-
56
- pub fn bboxes(&self) -> Option<&Vec<Bbox>> {
57
- self.bboxes.as_ref()
58
- }
59
-
60
- pub fn bboxes_mut(&mut self) -> Option<&mut Vec<Bbox>> {
61
- self.bboxes.as_mut()
62
- }
63
- }
64
-
65
- #[derive(Debug, PartialEq, Clone, Default)]
66
- pub struct Point2 {
67
- // A point2d with x, y, conf
68
- x: f32,
69
- y: f32,
70
- confidence: f32,
71
- }
72
-
73
- impl Point2 {
74
- pub fn new_with_conf(x: f32, y: f32, confidence: f32) -> Self {
75
- Self { x, y, confidence }
76
- }
77
-
78
- pub fn new(x: f32, y: f32) -> Self {
79
- Self {
80
- x,
81
- y,
82
- ..Default::default()
83
- }
84
- }
85
-
86
- pub fn x(&self) -> f32 {
87
- self.x
88
- }
89
-
90
- pub fn y(&self) -> f32 {
91
- self.y
92
- }
93
-
94
- pub fn confidence(&self) -> f32 {
95
- self.confidence
96
- }
97
- }
98
-
99
- #[derive(Debug, Clone, PartialEq, Default)]
100
- pub struct Embedding {
101
- // An float32 n-dims tensor
102
- data: Array<f32, IxDyn>,
103
- }
104
-
105
- impl Embedding {
106
- pub fn new(data: Array<f32, IxDyn>) -> Self {
107
- Self { data }
108
- }
109
-
110
- pub fn data(&self) -> &Array<f32, IxDyn> {
111
- &self.data
112
- }
113
-
114
- pub fn topk(&self, k: usize) -> Vec<(usize, f32)> {
115
- let mut probs = self
116
- .data
117
- .iter()
118
- .enumerate()
119
- .map(|(a, b)| (a, *b))
120
- .collect::<Vec<_>>();
121
- probs.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
122
- let mut topk = Vec::new();
123
- for &(id, confidence) in probs.iter().take(k) {
124
- topk.push((id, confidence));
125
- }
126
- topk
127
- }
128
-
129
- pub fn norm(&self) -> Array<f32, IxDyn> {
130
- let std_ = self.data.mapv(|x| x * x).sum_axis(Axis(0)).mapv(f32::sqrt);
131
- self.data.clone() / std_
132
- }
133
-
134
- pub fn top1(&self) -> (usize, f32) {
135
- self.topk(1)[0]
136
- }
137
- }
138
-
139
- #[derive(Debug, Clone, PartialEq, Default)]
140
- pub struct Bbox {
141
- // a bounding box around an object
142
- xmin: f32,
143
- ymin: f32,
144
- width: f32,
145
- height: f32,
146
- id: usize,
147
- confidence: f32,
148
- }
149
-
150
- impl Bbox {
151
- pub fn new_from_xywh(xmin: f32, ymin: f32, width: f32, height: f32) -> Self {
152
- Self {
153
- xmin,
154
- ymin,
155
- width,
156
- height,
157
- ..Default::default()
158
- }
159
- }
160
-
161
- pub fn new(xmin: f32, ymin: f32, width: f32, height: f32, id: usize, confidence: f32) -> Self {
162
- Self {
163
- xmin,
164
- ymin,
165
- width,
166
- height,
167
- id,
168
- confidence,
169
- }
170
- }
171
-
172
- pub fn width(&self) -> f32 {
173
- self.width
174
- }
175
-
176
- pub fn height(&self) -> f32 {
177
- self.height
178
- }
179
-
180
- pub fn xmin(&self) -> f32 {
181
- self.xmin
182
- }
183
-
184
- pub fn ymin(&self) -> f32 {
185
- self.ymin
186
- }
187
-
188
- pub fn xmax(&self) -> f32 {
189
- self.xmin + self.width
190
- }
191
-
192
- pub fn ymax(&self) -> f32 {
193
- self.ymin + self.height
194
- }
195
-
196
- pub fn tl(&self) -> Point2 {
197
- Point2::new(self.xmin, self.ymin)
198
- }
199
-
200
- pub fn br(&self) -> Point2 {
201
- Point2::new(self.xmax(), self.ymax())
202
- }
203
-
204
- pub fn cxcy(&self) -> Point2 {
205
- Point2::new(self.xmin + self.width / 2., self.ymin + self.height / 2.)
206
- }
207
-
208
- pub fn id(&self) -> usize {
209
- self.id
210
- }
211
-
212
- pub fn confidence(&self) -> f32 {
213
- self.confidence
214
- }
215
-
216
- pub fn area(&self) -> f32 {
217
- self.width * self.height
218
- }
219
-
220
- pub fn intersection_area(&self, another: &Bbox) -> f32 {
221
- let l = self.xmin.max(another.xmin);
222
- let r = (self.xmin + self.width).min(another.xmin + another.width);
223
- let t = self.ymin.max(another.ymin);
224
- let b = (self.ymin + self.height).min(another.ymin + another.height);
225
- (r - l + 1.).max(0.) * (b - t + 1.).max(0.)
226
- }
227
-
228
- pub fn union(&self, another: &Bbox) -> f32 {
229
- self.area() + another.area() - self.intersection_area(another)
230
- }
231
-
232
- pub fn iou(&self, another: &Bbox) -> f32 {
233
- self.intersection_area(another) / self.union(another)
234
- }
235
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime/README.md DELETED
@@ -1,43 +0,0 @@
1
- # YOLOv8 - ONNX Runtime
2
-
3
- This project implements YOLOv8 using ONNX Runtime.
4
-
5
- ## Installation
6
-
7
- To run this project, you need to install the required dependencies. The following instructions will guide you through the installation process.
8
-
9
- ### Installing Required Dependencies
10
-
11
- You can install the required dependencies by running the following command:
12
-
13
- ```bash
14
- pip install -r requirements.txt
15
- ```
16
-
17
- ### Installing `onnxruntime-gpu`
18
-
19
- If you have an NVIDIA GPU and want to leverage GPU acceleration, you can install the onnxruntime-gpu package using the following command:
20
-
21
- ```bash
22
- pip install onnxruntime-gpu
23
- ```
24
-
25
- Note: Make sure you have the appropriate GPU drivers installed on your system.
26
-
27
- ### Installing `onnxruntime` (CPU version)
28
-
29
- If you don't have an NVIDIA GPU or prefer to use the CPU version of onnxruntime, you can install the onnxruntime package using the following command:
30
-
31
- ```bash
32
- pip install onnxruntime
33
- ```
34
-
35
- ### Usage
36
-
37
- After successfully installing the required packages, you can run the YOLOv8 implementation using the following command:
38
-
39
- ```bash
40
- python main.py --model yolov8n.onnx --img image.jpg --conf-thres 0.5 --iou-thres 0.5
41
- ```
42
-
43
- Make sure to replace yolov8n.onnx with the path to your YOLOv8 ONNX model file, image.jpg with the path to your input image, and adjust the confidence threshold (conf-thres) and IoU threshold (iou-thres) values as needed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-ONNXRuntime/main.py DELETED
@@ -1,229 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
-
5
- import cv2
6
- import numpy as np
7
- import onnxruntime as ort
8
- import torch
9
-
10
- from ultralytics.utils import ASSETS, yaml_load
11
- from ultralytics.utils.checks import check_requirements, check_yaml
12
-
13
-
14
- class YOLOv8:
15
- """YOLOv8 object detection model class for handling inference and visualization."""
16
-
17
- def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
18
- """
19
- Initializes an instance of the YOLOv8 class.
20
-
21
- Args:
22
- onnx_model: Path to the ONNX model.
23
- input_image: Path to the input image.
24
- confidence_thres: Confidence threshold for filtering detections.
25
- iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
26
- """
27
- self.onnx_model = onnx_model
28
- self.input_image = input_image
29
- self.confidence_thres = confidence_thres
30
- self.iou_thres = iou_thres
31
-
32
- # Load the class names from the COCO dataset
33
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
34
-
35
- # Generate a color palette for the classes
36
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
37
-
38
- def draw_detections(self, img, box, score, class_id):
39
- """
40
- Draws bounding boxes and labels on the input image based on the detected objects.
41
-
42
- Args:
43
- img: The input image to draw detections on.
44
- box: Detected bounding box.
45
- score: Corresponding detection score.
46
- class_id: Class ID for the detected object.
47
-
48
- Returns:
49
- None
50
- """
51
- # Extract the coordinates of the bounding box
52
- x1, y1, w, h = box
53
-
54
- # Retrieve the color for the class ID
55
- color = self.color_palette[class_id]
56
-
57
- # Draw the bounding box on the image
58
- cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
59
-
60
- # Create the label text with class name and score
61
- label = f"{self.classes[class_id]}: {score:.2f}"
62
-
63
- # Calculate the dimensions of the label text
64
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
65
-
66
- # Calculate the position of the label text
67
- label_x = x1
68
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
69
-
70
- # Draw a filled rectangle as the background for the label text
71
- cv2.rectangle(
72
- img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED
73
- )
74
-
75
- # Draw the label text on the image
76
- cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
77
-
78
- def preprocess(self):
79
- """
80
- Preprocesses the input image before performing inference.
81
-
82
- Returns:
83
- image_data: Preprocessed image data ready for inference.
84
- """
85
- # Read the input image using OpenCV
86
- self.img = cv2.imread(self.input_image)
87
-
88
- # Get the height and width of the input image
89
- self.img_height, self.img_width = self.img.shape[:2]
90
-
91
- # Convert the image color space from BGR to RGB
92
- img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
93
-
94
- # Resize the image to match the input shape
95
- img = cv2.resize(img, (self.input_width, self.input_height))
96
-
97
- # Normalize the image data by dividing it by 255.0
98
- image_data = np.array(img) / 255.0
99
-
100
- # Transpose the image to have the channel dimension as the first dimension
101
- image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
102
-
103
- # Expand the dimensions of the image data to match the expected input shape
104
- image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
105
-
106
- # Return the preprocessed image data
107
- return image_data
108
-
109
- def postprocess(self, input_image, output):
110
- """
111
- Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
112
-
113
- Args:
114
- input_image (numpy.ndarray): The input image.
115
- output (numpy.ndarray): The output of the model.
116
-
117
- Returns:
118
- numpy.ndarray: The input image with detections drawn on it.
119
- """
120
- # Transpose and squeeze the output to match the expected shape
121
- outputs = np.transpose(np.squeeze(output[0]))
122
-
123
- # Get the number of rows in the outputs array
124
- rows = outputs.shape[0]
125
-
126
- # Lists to store the bounding boxes, scores, and class IDs of the detections
127
- boxes = []
128
- scores = []
129
- class_ids = []
130
-
131
- # Calculate the scaling factors for the bounding box coordinates
132
- x_factor = self.img_width / self.input_width
133
- y_factor = self.img_height / self.input_height
134
-
135
- # Iterate over each row in the outputs array
136
- for i in range(rows):
137
- # Extract the class scores from the current row
138
- classes_scores = outputs[i][4:]
139
-
140
- # Find the maximum score among the class scores
141
- max_score = np.amax(classes_scores)
142
-
143
- # If the maximum score is above the confidence threshold
144
- if max_score >= self.confidence_thres:
145
- # Get the class ID with the highest score
146
- class_id = np.argmax(classes_scores)
147
-
148
- # Extract the bounding box coordinates from the current row
149
- x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
150
-
151
- # Calculate the scaled coordinates of the bounding box
152
- left = int((x - w / 2) * x_factor)
153
- top = int((y - h / 2) * y_factor)
154
- width = int(w * x_factor)
155
- height = int(h * y_factor)
156
-
157
- # Add the class ID, score, and box coordinates to the respective lists
158
- class_ids.append(class_id)
159
- scores.append(max_score)
160
- boxes.append([left, top, width, height])
161
-
162
- # Apply non-maximum suppression to filter out overlapping bounding boxes
163
- indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
164
-
165
- # Iterate over the selected indices after non-maximum suppression
166
- for i in indices:
167
- # Get the box, score, and class ID corresponding to the index
168
- box = boxes[i]
169
- score = scores[i]
170
- class_id = class_ids[i]
171
-
172
- # Draw the detection on the input image
173
- self.draw_detections(input_image, box, score, class_id)
174
-
175
- # Return the modified input image
176
- return input_image
177
-
178
- def main(self):
179
- """
180
- Performs inference using an ONNX model and returns the output image with drawn detections.
181
-
182
- Returns:
183
- output_img: The output image with drawn detections.
184
- """
185
- # Create an inference session using the ONNX model and specify execution providers
186
- session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
187
-
188
- # Get the model inputs
189
- model_inputs = session.get_inputs()
190
-
191
- # Store the shape of the input for later use
192
- input_shape = model_inputs[0].shape
193
- self.input_width = input_shape[2]
194
- self.input_height = input_shape[3]
195
-
196
- # Preprocess the image data
197
- img_data = self.preprocess()
198
-
199
- # Run inference using the preprocessed image data
200
- outputs = session.run(None, {model_inputs[0].name: img_data})
201
-
202
- # Perform post-processing on the outputs to obtain output image.
203
- return self.postprocess(self.img, outputs) # output image
204
-
205
-
206
- if __name__ == "__main__":
207
- # Create an argument parser to handle command-line arguments
208
- parser = argparse.ArgumentParser()
209
- parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.")
210
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
211
- parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
212
- parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
213
- args = parser.parse_args()
214
-
215
- # Check the requirements and select the appropriate backend (CPU or GPU)
216
- check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
217
-
218
- # Create an instance of the YOLOv8 class with the specified arguments
219
- detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres)
220
-
221
- # Perform object detection and obtain the output image
222
- output_image = detection.main()
223
-
224
- # Display the output image in a window
225
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
226
- cv2.imshow("Output", output_image)
227
-
228
- # Wait for a key press to exit
229
- cv2.waitKey(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenCV-ONNX-Python/README.md DELETED
@@ -1,19 +0,0 @@
1
- # YOLOv8 - OpenCV
2
-
3
- Implementation YOLOv8 on OpenCV using ONNX Format.
4
-
5
- Just simply clone and run
6
-
7
- ```bash
8
- pip install -r requirements.txt
9
- python main.py --model yolov8n.onnx --img image.jpg
10
- ```
11
-
12
- If you start from scratch:
13
-
14
- ```bash
15
- pip install ultralytics
16
- yolo export model=yolov8n.pt imgsz=640 format=onnx opset=12
17
- ```
18
-
19
- _\*Make sure to include "opset=12"_
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenCV-ONNX-Python/main.py DELETED
@@ -1,130 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
-
5
- import cv2.dnn
6
- import numpy as np
7
-
8
- from ultralytics.utils import ASSETS, yaml_load
9
- from ultralytics.utils.checks import check_yaml
10
-
11
- CLASSES = yaml_load(check_yaml("coco8.yaml"))["names"]
12
- colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
13
-
14
-
15
- def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
16
- """
17
- Draws bounding boxes on the input image based on the provided arguments.
18
-
19
- Args:
20
- img (numpy.ndarray): The input image to draw the bounding box on.
21
- class_id (int): Class ID of the detected object.
22
- confidence (float): Confidence score of the detected object.
23
- x (int): X-coordinate of the top-left corner of the bounding box.
24
- y (int): Y-coordinate of the top-left corner of the bounding box.
25
- x_plus_w (int): X-coordinate of the bottom-right corner of the bounding box.
26
- y_plus_h (int): Y-coordinate of the bottom-right corner of the bounding box.
27
- """
28
- label = f"{CLASSES[class_id]} ({confidence:.2f})"
29
- color = colors[class_id]
30
- cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
31
- cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
32
-
33
-
34
- def main(onnx_model, input_image):
35
- """
36
- Main function to load ONNX model, perform inference, draw bounding boxes, and display the output image.
37
-
38
- Args:
39
- onnx_model (str): Path to the ONNX model.
40
- input_image (str): Path to the input image.
41
-
42
- Returns:
43
- list: List of dictionaries containing detection information such as class_id, class_name, confidence, etc.
44
- """
45
- # Load the ONNX model
46
- model: cv2.dnn.Net = cv2.dnn.readNetFromONNX(onnx_model)
47
-
48
- # Read the input image
49
- original_image: np.ndarray = cv2.imread(input_image)
50
- [height, width, _] = original_image.shape
51
-
52
- # Prepare a square image for inference
53
- length = max((height, width))
54
- image = np.zeros((length, length, 3), np.uint8)
55
- image[0:height, 0:width] = original_image
56
-
57
- # Calculate scale factor
58
- scale = length / 640
59
-
60
- # Preprocess the image and prepare blob for model
61
- blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
62
- model.setInput(blob)
63
-
64
- # Perform inference
65
- outputs = model.forward()
66
-
67
- # Prepare output array
68
- outputs = np.array([cv2.transpose(outputs[0])])
69
- rows = outputs.shape[1]
70
-
71
- boxes = []
72
- scores = []
73
- class_ids = []
74
-
75
- # Iterate through output to collect bounding boxes, confidence scores, and class IDs
76
- for i in range(rows):
77
- classes_scores = outputs[0][i][4:]
78
- (minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
79
- if maxScore >= 0.25:
80
- box = [
81
- outputs[0][i][0] - (0.5 * outputs[0][i][2]),
82
- outputs[0][i][1] - (0.5 * outputs[0][i][3]),
83
- outputs[0][i][2],
84
- outputs[0][i][3],
85
- ]
86
- boxes.append(box)
87
- scores.append(maxScore)
88
- class_ids.append(maxClassIndex)
89
-
90
- # Apply NMS (Non-maximum suppression)
91
- result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
92
-
93
- detections = []
94
-
95
- # Iterate through NMS results to draw bounding boxes and labels
96
- for i in range(len(result_boxes)):
97
- index = result_boxes[i]
98
- box = boxes[index]
99
- detection = {
100
- "class_id": class_ids[index],
101
- "class_name": CLASSES[class_ids[index]],
102
- "confidence": scores[index],
103
- "box": box,
104
- "scale": scale,
105
- }
106
- detections.append(detection)
107
- draw_bounding_box(
108
- original_image,
109
- class_ids[index],
110
- scores[index],
111
- round(box[0] * scale),
112
- round(box[1] * scale),
113
- round((box[0] + box[2]) * scale),
114
- round((box[1] + box[3]) * scale),
115
- )
116
-
117
- # Display the image with bounding boxes
118
- cv2.imshow("image", original_image)
119
- cv2.waitKey(0)
120
- cv2.destroyAllWindows()
121
-
122
- return detections
123
-
124
-
125
- if __name__ == "__main__":
126
- parser = argparse.ArgumentParser()
127
- parser.add_argument("--model", default="yolov8n.onnx", help="Input your ONNX model.")
128
- parser.add_argument("--img", default=str(ASSETS / "bus.jpg"), help="Path to input image.")
129
- args = parser.parse_args()
130
- main(args.model, args.img)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenVINO-CPP-Inference/CMakeLists.txt DELETED
@@ -1,21 +0,0 @@
1
- cmake_minimum_required(VERSION 3.12)
2
- project(yolov8_openvino_example)
3
-
4
- set(CMAKE_CXX_STANDARD 14)
5
-
6
- find_package(OpenCV REQUIRED)
7
-
8
- include_directories(
9
- ${OpenCV_INCLUDE_DIRS}
10
- /path/to/intel/openvino/runtime/include
11
- )
12
-
13
- add_executable(detect
14
- main.cc
15
- inference.cc
16
- )
17
-
18
- target_link_libraries(detect
19
- ${OpenCV_LIBS}
20
- /path/to/intel/openvino/runtime/lib/intel64/libopenvino.so
21
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenVINO-CPP-Inference/README.md DELETED
@@ -1,69 +0,0 @@
1
- # YOLOv8 OpenVINO Inference in C++ 🦾
2
-
3
- Welcome to the YOLOv8 OpenVINO Inference example in C++! This guide will help you get started with leveraging the powerful YOLOv8 models using OpenVINO and OpenCV API in your C++ projects. Whether you're looking to enhance performance or add flexibility to your applications, this example has got you covered.
4
-
5
- ## 🌟 Features
6
-
7
- - 🚀 **Model Format Support**: Compatible with `ONNX` and `OpenVINO IR` formats.
8
- - ⚡ **Precision Options**: Run models in `FP32`, `FP16`, and `INT8` precisions.
9
- - 🔄 **Dynamic Shape Loading**: Easily handle models with dynamic input shapes.
10
-
11
- ## 📋 Dependencies
12
-
13
- To ensure smooth execution, please make sure you have the following dependencies installed:
14
-
15
- | Dependency | Version |
16
- | ---------- | -------- |
17
- | OpenVINO | >=2023.3 |
18
- | OpenCV | >=4.5.0 |
19
- | C++ | >=14 |
20
- | CMake | >=3.12.0 |
21
-
22
- ## ⚙️ Build Instructions
23
-
24
- Follow these steps to build the project:
25
-
26
- 1. Clone the repository:
27
-
28
- ```bash
29
- git clone https://github.com/ultralytics/ultralytics.git
30
- cd ultralytics/YOLOv8-OpenVINO-CPP-Inference
31
- ```
32
-
33
- 2. Create a build directory and compile the project:
34
- ```bash
35
- mkdir build
36
- cd build
37
- cmake ..
38
- make
39
- ```
40
-
41
- ## 🛠️ Usage
42
-
43
- Once built, you can run inference on an image using the following command:
44
-
45
- ```bash
46
- ./detect <model_path.{onnx, xml}> <image_path.jpg>
47
- ```
48
-
49
- ## 🔄 Exporting YOLOv8 Models
50
-
51
- To use your YOLOv8 model with OpenVINO, you need to export it first. Use the command below to export the model:
52
-
53
- ```bash
54
- yolo export model=yolov8s.pt imgsz=640 format=openvino
55
- ```
56
-
57
- ## 📸 Screenshots
58
-
59
- ### Running Using OpenVINO Model
60
-
61
- ![Running OpenVINO Model](https://github.com/ultralytics/ultralytics/assets/76827698/2d7cf201-3def-4357-824c-12446ccf85a9)
62
-
63
- ### Running Using ONNX Model
64
-
65
- ![Running ONNX Model](https://github.com/ultralytics/ultralytics/assets/76827698/9b90031c-cc81-4cfb-8b34-c619e09035a7)
66
-
67
- ## ❤️ Contributions
68
-
69
- We hope this example helps you integrate YOLOv8 with OpenVINO and OpenCV into your C++ projects effortlessly. Happy coding! 🚀
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenVINO-CPP-Inference/inference.cc DELETED
@@ -1,175 +0,0 @@
1
- #include "inference.h"
2
-
3
- #include <memory>
4
- #include <opencv2/dnn.hpp>
5
- #include <random>
6
-
7
- namespace yolo {
8
-
9
- // Constructor to initialize the model with default input shape
10
- Inference::Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold) {
11
- model_input_shape_ = cv::Size(640, 640); // Set the default size for models with dynamic shapes to prevent errors.
12
- model_confidence_threshold_ = model_confidence_threshold;
13
- model_NMS_threshold_ = model_NMS_threshold;
14
- InitializeModel(model_path);
15
- }
16
-
17
- // Constructor to initialize the model with specified input shape
18
- Inference::Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold) {
19
- model_input_shape_ = model_input_shape;
20
- model_confidence_threshold_ = model_confidence_threshold;
21
- model_NMS_threshold_ = model_NMS_threshold;
22
- InitializeModel(model_path);
23
- }
24
-
25
- void Inference::InitializeModel(const std::string &model_path) {
26
- ov::Core core; // OpenVINO core object
27
- std::shared_ptr<ov::Model> model = core.read_model(model_path); // Read the model from file
28
-
29
- // If the model has dynamic shapes, reshape it to the specified input shape
30
- if (model->is_dynamic()) {
31
- model->reshape({1, 3, static_cast<long int>(model_input_shape_.height), static_cast<long int>(model_input_shape_.width)});
32
- }
33
-
34
- // Preprocessing setup for the model
35
- ov::preprocess::PrePostProcessor ppp = ov::preprocess::PrePostProcessor(model);
36
- ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC").set_color_format(ov::preprocess::ColorFormat::BGR);
37
- ppp.input().preprocess().convert_element_type(ov::element::f32).convert_color(ov::preprocess::ColorFormat::RGB).scale({255, 255, 255});
38
- ppp.input().model().set_layout("NCHW");
39
- ppp.output().tensor().set_element_type(ov::element::f32);
40
- model = ppp.build(); // Build the preprocessed model
41
-
42
- // Compile the model for inference
43
- compiled_model_ = core.compile_model(model, "AUTO");
44
- inference_request_ = compiled_model_.create_infer_request(); // Create inference request
45
-
46
- short width, height;
47
-
48
- // Get input shape from the model
49
- const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
50
- const ov::Shape input_shape = inputs[0].get_shape();
51
- height = input_shape[1];
52
- width = input_shape[2];
53
- model_input_shape_ = cv::Size2f(width, height);
54
-
55
- // Get output shape from the model
56
- const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
57
- const ov::Shape output_shape = outputs[0].get_shape();
58
- height = output_shape[1];
59
- width = output_shape[2];
60
- model_output_shape_ = cv::Size(width, height);
61
- }
62
-
63
- // Method to run inference on an input frame
64
- void Inference::RunInference(cv::Mat &frame) {
65
- Preprocessing(frame); // Preprocess the input frame
66
- inference_request_.infer(); // Run inference
67
- PostProcessing(frame); // Postprocess the inference results
68
- }
69
-
70
- // Method to preprocess the input frame
71
- void Inference::Preprocessing(const cv::Mat &frame) {
72
- cv::Mat resized_frame;
73
- cv::resize(frame, resized_frame, model_input_shape_, 0, 0, cv::INTER_AREA); // Resize the frame to match the model input shape
74
-
75
- // Calculate scaling factor
76
- scale_factor_.x = static_cast<float>(frame.cols / model_input_shape_.width);
77
- scale_factor_.y = static_cast<float>(frame.rows / model_input_shape_.height);
78
-
79
- float *input_data = (float *)resized_frame.data; // Get pointer to resized frame data
80
- const ov::Tensor input_tensor = ov::Tensor(compiled_model_.input().get_element_type(), compiled_model_.input().get_shape(), input_data); // Create input tensor
81
- inference_request_.set_input_tensor(input_tensor); // Set input tensor for inference
82
- }
83
-
84
- // Method to postprocess the inference results
85
- void Inference::PostProcessing(cv::Mat &frame) {
86
- std::vector<int> class_list;
87
- std::vector<float> confidence_list;
88
- std::vector<cv::Rect> box_list;
89
-
90
- // Get the output tensor from the inference request
91
- const float *detections = inference_request_.get_output_tensor().data<const float>();
92
- const cv::Mat detection_outputs(model_output_shape_, CV_32F, (float *)detections); // Create OpenCV matrix from output tensor
93
-
94
- // Iterate over detections and collect class IDs, confidence scores, and bounding boxes
95
- for (int i = 0; i < detection_outputs.cols; ++i) {
96
- const cv::Mat classes_scores = detection_outputs.col(i).rowRange(4, detection_outputs.rows);
97
-
98
- cv::Point class_id;
99
- double score;
100
- cv::minMaxLoc(classes_scores, nullptr, &score, nullptr, &class_id); // Find the class with the highest score
101
-
102
- // Check if the detection meets the confidence threshold
103
- if (score > model_confidence_threshold_) {
104
- class_list.push_back(class_id.y);
105
- confidence_list.push_back(score);
106
-
107
- const float x = detection_outputs.at<float>(0, i);
108
- const float y = detection_outputs.at<float>(1, i);
109
- const float w = detection_outputs.at<float>(2, i);
110
- const float h = detection_outputs.at<float>(3, i);
111
-
112
- cv::Rect box;
113
- box.x = static_cast<int>(x);
114
- box.y = static_cast<int>(y);
115
- box.width = static_cast<int>(w);
116
- box.height = static_cast<int>(h);
117
- box_list.push_back(box);
118
- }
119
- }
120
-
121
- // Apply Non-Maximum Suppression (NMS) to filter overlapping bounding boxes
122
- std::vector<int> NMS_result;
123
- cv::dnn::NMSBoxes(box_list, confidence_list, model_confidence_threshold_, model_NMS_threshold_, NMS_result);
124
-
125
- // Collect final detections after NMS
126
- for (int i = 0; i < NMS_result.size(); ++i) {
127
- Detection result;
128
- const unsigned short id = NMS_result[i];
129
-
130
- result.class_id = class_list[id];
131
- result.confidence = confidence_list[id];
132
- result.box = GetBoundingBox(box_list[id]);
133
-
134
- DrawDetectedObject(frame, result);
135
- }
136
- }
137
-
138
- // Method to get the bounding box in the correct scale
139
- cv::Rect Inference::GetBoundingBox(const cv::Rect &src) const {
140
- cv::Rect box = src;
141
- box.x = (box.x - box.width / 2) * scale_factor_.x;
142
- box.y = (box.y - box.height / 2) * scale_factor_.y;
143
- box.width *= scale_factor_.x;
144
- box.height *= scale_factor_.y;
145
- return box;
146
- }
147
-
148
- void Inference::DrawDetectedObject(cv::Mat &frame, const Detection &detection) const {
149
- const cv::Rect &box = detection.box;
150
- const float &confidence = detection.confidence;
151
- const int &class_id = detection.class_id;
152
-
153
- // Generate a random color for the bounding box
154
- std::random_device rd;
155
- std::mt19937 gen(rd());
156
- std::uniform_int_distribution<int> dis(120, 255);
157
- const cv::Scalar &color = cv::Scalar(dis(gen), dis(gen), dis(gen));
158
-
159
- // Draw the bounding box around the detected object
160
- cv::rectangle(frame, cv::Point(box.x, box.y), cv::Point(box.x + box.width, box.y + box.height), color, 3);
161
-
162
- // Prepare the class label and confidence text
163
- std::string classString = classes_[class_id] + std::to_string(confidence).substr(0, 4);
164
-
165
- // Get the size of the text box
166
- cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 0.75, 2, 0);
167
- cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
168
-
169
- // Draw the text box
170
- cv::rectangle(frame, textBox, color, cv::FILLED);
171
-
172
- // Put the class label and confidence text above the bounding box
173
- cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 0.75, cv::Scalar(0, 0, 0), 2, 0);
174
- }
175
- } // namespace yolo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenVINO-CPP-Inference/inference.h DELETED
@@ -1,59 +0,0 @@
1
- #ifndef YOLO_INFERENCE_H_
2
- #define YOLO_INFERENCE_H_
3
-
4
- #include <string>
5
- #include <vector>
6
- #include <opencv2/imgproc.hpp>
7
- #include <openvino/openvino.hpp>
8
-
9
- namespace yolo {
10
-
11
- struct Detection {
12
- short class_id;
13
- float confidence;
14
- cv::Rect box;
15
- };
16
-
17
- class Inference {
18
- public:
19
- Inference() {}
20
- // Constructor to initialize the model with default input shape
21
- Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold);
22
- // Constructor to initialize the model with specified input shape
23
- Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold);
24
-
25
- void RunInference(cv::Mat &frame);
26
-
27
- private:
28
- void InitializeModel(const std::string &model_path);
29
- void Preprocessing(const cv::Mat &frame);
30
- void PostProcessing(cv::Mat &frame);
31
- cv::Rect GetBoundingBox(const cv::Rect &src) const;
32
- void DrawDetectedObject(cv::Mat &frame, const Detection &detections) const;
33
-
34
- cv::Point2f scale_factor_; // Scaling factor for the input frame
35
- cv::Size2f model_input_shape_; // Input shape of the model
36
- cv::Size model_output_shape_; // Output shape of the model
37
-
38
- ov::InferRequest inference_request_; // OpenVINO inference request
39
- ov::CompiledModel compiled_model_; // OpenVINO compiled model
40
-
41
- float model_confidence_threshold_; // Confidence threshold for detections
42
- float model_NMS_threshold_; // Non-Maximum Suppression threshold
43
-
44
- std::vector<std::string> classes_ {
45
- "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
46
- "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
47
- "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
48
- "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
49
- "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
50
- "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
51
- "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard",
52
- "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
53
- "scissors", "teddy bear", "hair drier", "toothbrush"
54
- };
55
- };
56
-
57
- } // namespace yolo
58
-
59
- #endif // YOLO_INFERENCE_H_
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-OpenVINO-CPP-Inference/main.cc DELETED
@@ -1,41 +0,0 @@
1
- #include "inference.h"
2
-
3
- #include <iostream>
4
- #include <opencv2/highgui.hpp>
5
-
6
- int main(int argc, char **argv) {
7
- // Check if the correct number of arguments is provided
8
- if (argc != 3) {
9
- std::cerr << "usage: " << argv[0] << " <model_path> <image_path>" << std::endl;
10
- return 1;
11
- }
12
-
13
- // Get the model and image paths from the command-line arguments
14
- const std::string model_path = argv[1];
15
- const std::string image_path = argv[2];
16
-
17
- // Read the input image
18
- cv::Mat image = cv::imread(image_path);
19
-
20
- // Check if the image was successfully loaded
21
- if (image.empty()) {
22
- std::cerr << "ERROR: image is empty" << std::endl;
23
- return 1;
24
- }
25
-
26
- // Define the confidence and NMS thresholds
27
- const float confidence_threshold = 0.5;
28
- const float NMS_threshold = 0.5;
29
-
30
- // Initialize the YOLO inference with the specified model and parameters
31
- yolo::Inference inference(model_path, cv::Size(640, 640), confidence_threshold, NMS_threshold);
32
-
33
- // Run inference on the input image
34
- inference.RunInference(image);
35
-
36
- // Display the image with the detections
37
- cv::imshow("image", image);
38
- cv::waitKey(0);
39
-
40
- return 0;
41
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Region-Counter/readme.md DELETED
@@ -1,128 +0,0 @@
1
- # Regions Counting Using YOLOv8 (Inference on Video)
2
-
3
- > **Region Counter** is now part of **[Ultralytics Solutions](https://docs.ultralytics.com/solutions/)**, offering improved features and regular updates. Enjoy improved features and regular updates!
4
-
5
- 🔗 **[Explore Object Counting in Regions Here](https://docs.ultralytics.com/guides/region-counting/)**
6
-
7
- > 🔔 **Notice:**
8
-
9
- > The GitHub example will remain available but **will no longer be actively maintained**. For the latest updates and improvements, please use the official [link](https://docs.ultralytics.com/guides/region-counting/). Thank you!
10
-
11
- Region counting is a method employed to tally the objects within a specified area, allowing for more sophisticated analyses when multiple regions are considered. These regions can be adjusted interactively using a Left Mouse Click, and the counting process occurs in real time. Regions can be adjusted to suit the user's preferences and requirements.
12
-
13
- <div>
14
- <p align="center">
15
- <img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/5ab3bbd7-fd12-4849-928e-5f294d6c3fcf" width="45%" alt="YOLOv8 region counting visual 1">
16
- <img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/e7c1aea7-474d-4d78-8d48-b50854ffe1ca" width="45%" alt="YOLOv8 region counting visual 2">
17
- </p>
18
- </div>
19
-
20
- ## Table of Contents
21
-
22
- - [Step 1: Install the Required Libraries](#step-1-install-the-required-libraries)
23
- - [Step 2: Run the Region Counting Using Ultralytics YOLOv8](#step-2-run-the-region-counting-using-ultralytics-yolov8)
24
- - [Usage Options](#usage-options)
25
- - [FAQ](#faq)
26
-
27
- ## Step 1: Install the Required Libraries
28
-
29
- Clone the repository, install dependencies and `cd` to this local directory for commands in Step 2.
30
-
31
- ```bash
32
- # Clone ultralytics repo
33
- git clone https://github.com/ultralytics/ultralytics
34
-
35
- # cd to local directory
36
- cd ultralytics/examples/YOLOv8-Region-Counter
37
- ```
38
-
39
- ## Step 2: Run the Region Counting Using Ultralytics YOLOv8
40
-
41
- Here are the basic commands for running the inference:
42
-
43
- ### Note
44
-
45
- After the video begins playing, you can freely move the region anywhere within the video by simply clicking and dragging using the left mouse button.
46
-
47
- ```bash
48
- # If you want to save results
49
- python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img
50
-
51
- # If you want to run model on CPU
52
- python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img --device cpu
53
-
54
- # If you want to change model file
55
- python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --weights "path/to/model.pt"
56
-
57
- # If you want to detect specific class (first class and third class)
58
- python yolov8_region_counter.py --source "path/to/video.mp4" --classes 0 2 --weights "path/to/model.pt"
59
-
60
- # If you don't want to save results
61
- python yolov8_region_counter.py --source "path/to/video.mp4" --view-img
62
- ```
63
-
64
- ## Usage Options
65
-
66
- - `--source`: Specifies the path to the video file you want to run inference on.
67
- - `--device`: Specifies the device `cpu` or `0`
68
- - `--save-img`: Flag to save the detection results as images.
69
- - `--weights`: Specifies a different YOLOv8 model file (e.g., `yolov8n.pt`, `yolov8s.pt`, `yolov8m.pt`, `yolov8l.pt`, `yolov8x.pt`).
70
- - `--classes`: Specifies the class to be detected
71
- - `--line-thickness`: Specifies the bounding box thickness
72
- - `--region-thickness`: Specifies the region boxes thickness
73
- - `--track-thickness`: Specifies the track line thickness
74
-
75
- ## FAQ
76
-
77
- **1. What Does Region Counting Involve?**
78
-
79
- Region counting is a computational method utilized to ascertain the quantity of objects within a specific area in recorded video or real-time streams. This technique finds frequent application in image processing, computer vision, and pattern recognition, facilitating the analysis and segmentation of objects or features based on their spatial relationships.
80
-
81
- **2. Is Friendly Region Plotting Supported by the Region Counter?**
82
-
83
- The Region Counting offers the capability to create regions in various formats, such as polygons and rectangles. You have the flexibility to modify region attributes, including coordinates, colors, and other details, as demonstrated in the following code:
84
-
85
- ```python
86
- from shapely.geometry import Polygon
87
-
88
- counting_regions = [
89
- {
90
- "name": "YOLOv8 Polygon Region",
91
- "polygon": Polygon(
92
- [(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]
93
- ), # Polygon with five points (Pentagon)
94
- "counts": 0,
95
- "dragging": False,
96
- "region_color": (255, 42, 4), # BGR Value
97
- "text_color": (255, 255, 255), # Region Text Color
98
- },
99
- {
100
- "name": "YOLOv8 Rectangle Region",
101
- "polygon": Polygon([(200, 250), (440, 250), (440, 550), (200, 550)]), # Rectangle with four points
102
- "counts": 0,
103
- "dragging": False,
104
- "region_color": (37, 255, 225), # BGR Value
105
- "text_color": (0, 0, 0), # Region Text Color
106
- },
107
- ]
108
- ```
109
-
110
- **3. Why Combine Region Counting with YOLOv8?**
111
-
112
- YOLOv8 specializes in the detection and tracking of objects in video streams. Region counting complements this by enabling object counting within designated areas, making it a valuable application of YOLOv8.
113
-
114
- **4. How Can I Troubleshoot Issues?**
115
-
116
- To gain more insights during inference, you can include the `--debug` flag in your command:
117
-
118
- ```bash
119
- python yolov8_region_counter.py --source "path to video file" --debug
120
- ```
121
-
122
- **5. Can I Employ Other YOLO Versions?**
123
-
124
- Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option.
125
-
126
- **6. Where Can I Access Additional Information?**
127
-
128
- For a comprehensive guide on using YOLOv8 with Object Tracking, please refer to [Multi-Object Tracking with Ultralytics YOLO](https://docs.ultralytics.com/modes/track/).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Region-Counter/yolov8_region_counter.py DELETED
@@ -1,253 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
- from collections import defaultdict
5
- from pathlib import Path
6
-
7
- import cv2
8
- import numpy as np
9
- from shapely.geometry import Polygon
10
- from shapely.geometry.point import Point
11
-
12
- from ultralytics import YOLO
13
- from ultralytics.utils.files import increment_path
14
- from ultralytics.utils.plotting import Annotator, colors
15
-
16
- track_history = defaultdict(list)
17
-
18
- current_region = None
19
- counting_regions = [
20
- {
21
- "name": "YOLOv8 Polygon Region",
22
- "polygon": Polygon([(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]), # Polygon points
23
- "counts": 0,
24
- "dragging": False,
25
- "region_color": (255, 42, 4), # BGR Value
26
- "text_color": (255, 255, 255), # Region Text Color
27
- },
28
- {
29
- "name": "YOLOv8 Rectangle Region",
30
- "polygon": Polygon([(200, 250), (440, 250), (440, 550), (200, 550)]), # Polygon points
31
- "counts": 0,
32
- "dragging": False,
33
- "region_color": (37, 255, 225), # BGR Value
34
- "text_color": (0, 0, 0), # Region Text Color
35
- },
36
- ]
37
-
38
-
39
- def mouse_callback(event, x, y, flags, param):
40
- """
41
- Handles mouse events for region manipulation.
42
-
43
- Args:
44
- event (int): The mouse event type (e.g., cv2.EVENT_LBUTTONDOWN).
45
- x (int): The x-coordinate of the mouse pointer.
46
- y (int): The y-coordinate of the mouse pointer.
47
- flags (int): Additional flags passed by OpenCV.
48
- param: Additional parameters passed to the callback (not used in this function).
49
-
50
- Global Variables:
51
- current_region (dict): A dictionary representing the current selected region.
52
-
53
- Mouse Events:
54
- - LBUTTONDOWN: Initiates dragging for the region containing the clicked point.
55
- - MOUSEMOVE: Moves the selected region if dragging is active.
56
- - LBUTTONUP: Ends dragging for the selected region.
57
-
58
- Notes:
59
- - This function is intended to be used as a callback for OpenCV mouse events.
60
- - Requires the existence of the 'counting_regions' list and the 'Polygon' class.
61
-
62
- Example:
63
- >>> cv2.setMouseCallback(window_name, mouse_callback)
64
- """
65
- global current_region
66
-
67
- # Mouse left button down event
68
- if event == cv2.EVENT_LBUTTONDOWN:
69
- for region in counting_regions:
70
- if region["polygon"].contains(Point((x, y))):
71
- current_region = region
72
- current_region["dragging"] = True
73
- current_region["offset_x"] = x
74
- current_region["offset_y"] = y
75
-
76
- # Mouse move event
77
- elif event == cv2.EVENT_MOUSEMOVE:
78
- if current_region is not None and current_region["dragging"]:
79
- dx = x - current_region["offset_x"]
80
- dy = y - current_region["offset_y"]
81
- current_region["polygon"] = Polygon(
82
- [(p[0] + dx, p[1] + dy) for p in current_region["polygon"].exterior.coords]
83
- )
84
- current_region["offset_x"] = x
85
- current_region["offset_y"] = y
86
-
87
- # Mouse left button up event
88
- elif event == cv2.EVENT_LBUTTONUP:
89
- if current_region is not None and current_region["dragging"]:
90
- current_region["dragging"] = False
91
-
92
-
93
- def run(
94
- weights="yolov8n.pt",
95
- source=None,
96
- device="cpu",
97
- view_img=False,
98
- save_img=False,
99
- exist_ok=False,
100
- classes=None,
101
- line_thickness=2,
102
- track_thickness=2,
103
- region_thickness=2,
104
- ):
105
- """
106
- Run Region counting on a video using YOLOv8 and ByteTrack.
107
-
108
- Supports movable region for real time counting inside specific area.
109
- Supports multiple regions counting.
110
- Regions can be Polygons or rectangle in shape
111
-
112
- Args:
113
- weights (str): Model weights path.
114
- source (str): Video file path.
115
- device (str): processing device cpu, 0, 1
116
- view_img (bool): Show results.
117
- save_img (bool): Save results.
118
- exist_ok (bool): Overwrite existing files.
119
- classes (list): classes to detect and track
120
- line_thickness (int): Bounding box thickness.
121
- track_thickness (int): Tracking line thickness
122
- region_thickness (int): Region thickness.
123
- """
124
- vid_frame_count = 0
125
-
126
- # Check source path
127
- if not Path(source).exists():
128
- raise FileNotFoundError(f"Source path '{source}' does not exist.")
129
-
130
- # Setup Model
131
- model = YOLO(f"{weights}")
132
- model.to("cuda") if device == "0" else model.to("cpu")
133
-
134
- # Extract classes names
135
- names = model.names
136
-
137
- # Video setup
138
- videocapture = cv2.VideoCapture(source)
139
- frame_width = int(videocapture.get(3))
140
- frame_height = int(videocapture.get(4))
141
- fps = int(videocapture.get(5))
142
- fourcc = cv2.VideoWriter_fourcc(*"mp4v")
143
-
144
- # Output setup
145
- save_dir = increment_path(Path("ultralytics_rc_output") / "exp", exist_ok)
146
- save_dir.mkdir(parents=True, exist_ok=True)
147
- video_writer = cv2.VideoWriter(str(save_dir / f"{Path(source).stem}.avi"), fourcc, fps, (frame_width, frame_height))
148
-
149
- # Iterate over video frames
150
- while videocapture.isOpened():
151
- success, frame = videocapture.read()
152
- if not success:
153
- break
154
- vid_frame_count += 1
155
-
156
- # Extract the results
157
- results = model.track(frame, persist=True, classes=classes)
158
-
159
- if results[0].boxes.id is not None:
160
- boxes = results[0].boxes.xyxy.cpu()
161
- track_ids = results[0].boxes.id.int().cpu().tolist()
162
- clss = results[0].boxes.cls.cpu().tolist()
163
-
164
- annotator = Annotator(frame, line_width=line_thickness, example=str(names))
165
-
166
- for box, track_id, cls in zip(boxes, track_ids, clss):
167
- annotator.box_label(box, str(names[cls]), color=colors(cls, True))
168
- bbox_center = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2 # Bbox center
169
-
170
- track = track_history[track_id] # Tracking Lines plot
171
- track.append((float(bbox_center[0]), float(bbox_center[1])))
172
- if len(track) > 30:
173
- track.pop(0)
174
- points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
175
- cv2.polylines(frame, [points], isClosed=False, color=colors(cls, True), thickness=track_thickness)
176
-
177
- # Check if detection inside region
178
- for region in counting_regions:
179
- if region["polygon"].contains(Point((bbox_center[0], bbox_center[1]))):
180
- region["counts"] += 1
181
-
182
- # Draw regions (Polygons/Rectangles)
183
- for region in counting_regions:
184
- region_label = str(region["counts"])
185
- region_color = region["region_color"]
186
- region_text_color = region["text_color"]
187
-
188
- polygon_coordinates = np.array(region["polygon"].exterior.coords, dtype=np.int32)
189
- centroid_x, centroid_y = int(region["polygon"].centroid.x), int(region["polygon"].centroid.y)
190
-
191
- text_size, _ = cv2.getTextSize(
192
- region_label, cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.7, thickness=line_thickness
193
- )
194
- text_x = centroid_x - text_size[0] // 2
195
- text_y = centroid_y + text_size[1] // 2
196
- cv2.rectangle(
197
- frame,
198
- (text_x - 5, text_y - text_size[1] - 5),
199
- (text_x + text_size[0] + 5, text_y + 5),
200
- region_color,
201
- -1,
202
- )
203
- cv2.putText(
204
- frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, region_text_color, line_thickness
205
- )
206
- cv2.polylines(frame, [polygon_coordinates], isClosed=True, color=region_color, thickness=region_thickness)
207
-
208
- if view_img:
209
- if vid_frame_count == 1:
210
- cv2.namedWindow("Ultralytics YOLOv8 Region Counter Movable")
211
- cv2.setMouseCallback("Ultralytics YOLOv8 Region Counter Movable", mouse_callback)
212
- cv2.imshow("Ultralytics YOLOv8 Region Counter Movable", frame)
213
-
214
- if save_img:
215
- video_writer.write(frame)
216
-
217
- for region in counting_regions: # Reinitialize count for each region
218
- region["counts"] = 0
219
-
220
- if cv2.waitKey(1) & 0xFF == ord("q"):
221
- break
222
-
223
- del vid_frame_count
224
- video_writer.release()
225
- videocapture.release()
226
- cv2.destroyAllWindows()
227
-
228
-
229
- def parse_opt():
230
- """Parse command line arguments."""
231
- parser = argparse.ArgumentParser()
232
- parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path")
233
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
234
- parser.add_argument("--source", type=str, required=True, help="video file path")
235
- parser.add_argument("--view-img", action="store_true", help="show results")
236
- parser.add_argument("--save-img", action="store_true", help="save results")
237
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
238
- parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
239
- parser.add_argument("--line-thickness", type=int, default=2, help="bounding box thickness")
240
- parser.add_argument("--track-thickness", type=int, default=2, help="Tracking line thickness")
241
- parser.add_argument("--region-thickness", type=int, default=4, help="Region thickness")
242
-
243
- return parser.parse_args()
244
-
245
-
246
- def main(options):
247
- """Main function."""
248
- run(**vars(options))
249
-
250
-
251
- if __name__ == "__main__":
252
- opt = parse_opt()
253
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-SAHI-Inference-Video/readme.md DELETED
@@ -1,69 +0,0 @@
1
- # YOLO11 with SAHI (Inference on Video)
2
-
3
- [SAHI](https://docs.ultralytics.com/guides/sahi-tiled-inference/) is designed to optimize object detection algorithms for large-scale and high-resolution imagery. It partitions images into manageable slices, performs object detection on each slice, and then stitches the results back together. This tutorial will guide you through the process of running YOLO11 inference on video files with the aid of SAHI.
4
-
5
- ## Table of Contents
6
-
7
- - [Step 1: Install the Required Libraries](#step-1-install-the-required-libraries)
8
- - [Step 2: Run the Inference with SAHI using Ultralytics YOLO11](#step-2-run-the-inference-with-sahi-using-ultralytics-yolo11)
9
- - [Usage Options](#usage-options)
10
- - [FAQ](#faq)
11
-
12
- ## Step 1: Install the Required Libraries
13
-
14
- Clone the repository, install dependencies and `cd` to this local directory for commands in Step 2.
15
-
16
- ```bash
17
- # Clone ultralytics repo
18
- git clone https://github.com/ultralytics/ultralytics
19
-
20
- # Install dependencies
21
- pip install -U sahi ultralytics
22
-
23
- # cd to local directory
24
- cd ultralytics/examples/YOLOv8-SAHI-Inference-Video
25
- ```
26
-
27
- ## Step 2: Run the Inference with SAHI using Ultralytics YOLO11
28
-
29
- Here are the basic commands for running the inference:
30
-
31
- ```bash
32
- #if you want to save results
33
- python yolov8_sahi.py --source "path/to/video.mp4" --save-img
34
-
35
- #if you want to change model file
36
- python yolov8_sahi.py --source "path/to/video.mp4" --save-img --weights "yolo11n.pt"
37
- ```
38
-
39
- ## Usage Options
40
-
41
- - `--source`: Specifies the path to the video file you want to run inference on.
42
- - `--save-img`: Flag to save the detection results as images.
43
- - `--weights`: Specifies a different YOLO11 model file (e.g., `yolo11n.pt`, `yolov8s.pt`, `yolo11m.pt`, `yolo11l.pt`, `yolo11x.pt`).
44
-
45
- ## FAQ
46
-
47
- **1. What is SAHI?**
48
-
49
- SAHI stands for Slicing Aided Hyper Inference. It is a library designed to optimize object detection algorithms for large-scale and high-resolution images. The library source code is available on [GitHub](https://github.com/obss/sahi).
50
-
51
- **2. Why use SAHI with YOLO11?**
52
-
53
- SAHI can handle large-scale images by slicing them into smaller, more manageable sizes without compromising the detection quality. This makes it a great companion to YOLO11, especially when working with high-resolution videos.
54
-
55
- **3. How do I debug issues?**
56
-
57
- You can add the `--debug` flag to your command to print out more information during inference:
58
-
59
- ```bash
60
- python yolov8_sahi.py --source "path to video file" --debug
61
- ```
62
-
63
- **4. Can I use other YOLO versions?**
64
-
65
- Yes, you can specify different YOLO model weights using the `--weights` option.
66
-
67
- **5. Where can I find more information?**
68
-
69
- For a full guide to YOLO11 with SAHI see [https://docs.ultralytics.com/guides/sahi-tiled-inference](https://docs.ultralytics.com/guides/sahi-tiled-inference/).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-SAHI-Inference-Video/yolov8_sahi.py DELETED
@@ -1,108 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
- from pathlib import Path
5
-
6
- import cv2
7
- from sahi import AutoDetectionModel
8
- from sahi.predict import get_sliced_prediction
9
- from sahi.utils.ultralytics import download_yolo11n_model
10
-
11
- from ultralytics.utils.files import increment_path
12
- from ultralytics.utils.plotting import Annotator, colors
13
-
14
-
15
- class SAHIInference:
16
- """Runs Ultralytics YOLO11 and SAHI for object detection on video with options to view, save, and track results."""
17
-
18
- def __init__(self):
19
- """Initializes the SAHIInference class for performing sliced inference using SAHI with YOLO11 models."""
20
- self.detection_model = None
21
-
22
- def load_model(self, weights):
23
- """Loads a YOLO11 model with specified weights for object detection using SAHI."""
24
- yolo11_model_path = f"models/{weights}"
25
- download_yolo11n_model(yolo11_model_path)
26
- self.detection_model = AutoDetectionModel.from_pretrained(
27
- model_type="ultralytics", model_path=yolo11_model_path, device="cpu"
28
- )
29
-
30
- def inference(
31
- self,
32
- weights="yolo11n.pt",
33
- source="test.mp4",
34
- view_img=False,
35
- save_img=False,
36
- exist_ok=False,
37
- ):
38
- """
39
- Run object detection on a video using YOLO11 and SAHI.
40
-
41
- Args:
42
- weights (str): Model weights path.
43
- source (str): Video file path.
44
- view_img (bool): Show results.
45
- save_img (bool): Save results.
46
- exist_ok (bool): Overwrite existing files.
47
- """
48
- # Video setup
49
- cap = cv2.VideoCapture(source)
50
- assert cap.isOpened(), "Error reading video file"
51
- frame_width, frame_height = int(cap.get(3)), int(cap.get(4))
52
-
53
- # Output setup
54
- save_dir = increment_path(Path("ultralytics_results_with_sahi") / "exp", exist_ok)
55
- save_dir.mkdir(parents=True, exist_ok=True)
56
- video_writer = cv2.VideoWriter(
57
- str(save_dir / f"{Path(source).stem}.avi"),
58
- cv2.VideoWriter_fourcc(*"MJPG"),
59
- int(cap.get(5)),
60
- (frame_width, frame_height),
61
- )
62
-
63
- # Load model
64
- self.load_model(weights)
65
- while cap.isOpened():
66
- success, frame = cap.read()
67
- if not success:
68
- break
69
- annotator = Annotator(frame) # Initialize annotator for plotting detection and tracking results
70
- results = get_sliced_prediction(
71
- frame[..., ::-1],
72
- self.detection_model,
73
- slice_height=512,
74
- slice_width=512,
75
- )
76
- detection_data = [
77
- (det.category.name, det.category.id, (det.bbox.minx, det.bbox.miny, det.bbox.maxx, det.bbox.maxy))
78
- for det in results.object_prediction_list
79
- ]
80
-
81
- for det in detection_data:
82
- annotator.box_label(det[2], label=str(det[0]), color=colors(int(det[1]), True))
83
-
84
- if view_img:
85
- cv2.imshow(Path(source).stem, frame)
86
- if save_img:
87
- video_writer.write(frame)
88
-
89
- if cv2.waitKey(1) & 0xFF == ord("q"):
90
- break
91
- video_writer.release()
92
- cap.release()
93
- cv2.destroyAllWindows()
94
-
95
- def parse_opt(self):
96
- """Parse command line arguments."""
97
- parser = argparse.ArgumentParser()
98
- parser.add_argument("--weights", type=str, default="yolo11n.pt", help="initial weights path")
99
- parser.add_argument("--source", type=str, required=True, help="video file path")
100
- parser.add_argument("--view-img", action="store_true", help="show results")
101
- parser.add_argument("--save-img", action="store_true", help="save results")
102
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
103
- return parser.parse_args()
104
-
105
-
106
- if __name__ == "__main__":
107
- inference = SAHIInference()
108
- inference.inference(**vars(inference.parse_opt()))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Segmentation-ONNXRuntime-Python/README.md DELETED
@@ -1,63 +0,0 @@
1
- # YOLOv8-Segmentation-ONNXRuntime-Python Demo
2
-
3
- This repository provides a Python demo for performing segmentation with YOLOv8 using ONNX Runtime, highlighting the interoperability of YOLOv8 models without the need for the full PyTorch stack.
4
-
5
- ## Features
6
-
7
- - **Framework Agnostic**: Runs segmentation inference purely on ONNX Runtime without importing PyTorch.
8
- - **Efficient Inference**: Supports both FP32 and FP16 precision for ONNX models, catering to different computational needs.
9
- - **Ease of Use**: Utilizes simple command-line arguments for model execution.
10
- - **Broad Compatibility**: Leverages Numpy and OpenCV for image processing, ensuring broad compatibility with various environments.
11
-
12
- ## Installation
13
-
14
- Install the required packages using pip. You will need `ultralytics` for exporting YOLOv8-seg ONNX model and using some utility functions, `onnxruntime-gpu` for GPU-accelerated inference, and `opencv-python` for image processing.
15
-
16
- ```bash
17
- pip install ultralytics
18
- pip install onnxruntime-gpu # For GPU support
19
- # pip install onnxruntime # Use this instead if you don't have an NVIDIA GPU
20
- pip install numpy
21
- pip install opencv-python
22
- ```
23
-
24
- ## Getting Started
25
-
26
- ### 1. Export the YOLOv8 ONNX Model
27
-
28
- Export the YOLOv8 segmentation model to ONNX format using the provided `ultralytics` package.
29
-
30
- ```bash
31
- yolo export model=yolov8s-seg.pt imgsz=640 format=onnx opset=12 simplify
32
- ```
33
-
34
- ### 2. Run Inference
35
-
36
- Perform inference with the exported ONNX model on your images.
37
-
38
- ```bash
39
- python main.py --model <MODEL_PATH> --source <IMAGE_PATH>
40
- ```
41
-
42
- ### Example Output
43
-
44
- After running the command, you should see segmentation results similar to this:
45
-
46
- <img src="https://user-images.githubusercontent.com/51357717/279988626-eb74823f-1563-4d58-a8e4-0494025b7c9a.jpg" alt="Segmentation Demo" width="800">
47
-
48
- ## Advanced Usage
49
-
50
- For more advanced usage, including real-time video processing, please refer to the `main.py` script's command-line arguments.
51
-
52
- ## Contributing
53
-
54
- We welcome contributions to improve this demo! Please submit issues and pull requests for bug reports, feature requests, or submitting a new algorithm enhancement.
55
-
56
- ## License
57
-
58
- This project is licensed under the AGPL-3.0 License - see the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for details.
59
-
60
- ## Acknowledgments
61
-
62
- - The YOLOv8-Segmentation-ONNXRuntime-Python demo is contributed by GitHub user [jamjamjon](https://github.com/jamjamjon).
63
- - Thanks to the ONNX Runtime community for providing a robust and efficient inference engine.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-Segmentation-ONNXRuntime-Python/main.py DELETED
@@ -1,338 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
-
5
- import cv2
6
- import numpy as np
7
- import onnxruntime as ort
8
-
9
- from ultralytics.utils import ASSETS, yaml_load
10
- from ultralytics.utils.checks import check_yaml
11
- from ultralytics.utils.plotting import Colors
12
-
13
-
14
- class YOLOv8Seg:
15
- """YOLOv8 segmentation model."""
16
-
17
- def __init__(self, onnx_model):
18
- """
19
- Initialization.
20
-
21
- Args:
22
- onnx_model (str): Path to the ONNX model.
23
- """
24
- # Build Ort session
25
- self.session = ort.InferenceSession(
26
- onnx_model,
27
- providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
28
- if ort.get_device() == "GPU"
29
- else ["CPUExecutionProvider"],
30
- )
31
-
32
- # Numpy dtype: support both FP32 and FP16 onnx model
33
- self.ndtype = np.half if self.session.get_inputs()[0].type == "tensor(float16)" else np.single
34
-
35
- # Get model width and height(YOLOv8-seg only has one input)
36
- self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:]
37
-
38
- # Load COCO class names
39
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
40
-
41
- # Create color palette
42
- self.color_palette = Colors()
43
-
44
- def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
45
- """
46
- The whole pipeline: pre-process -> inference -> post-process.
47
-
48
- Args:
49
- im0 (Numpy.ndarray): original input image.
50
- conf_threshold (float): confidence threshold for filtering predictions.
51
- iou_threshold (float): iou threshold for NMS.
52
- nm (int): the number of masks.
53
-
54
- Returns:
55
- boxes (List): list of bounding boxes.
56
- segments (List): list of segments.
57
- masks (np.ndarray): [N, H, W], output masks.
58
- """
59
- # Pre-process
60
- im, ratio, (pad_w, pad_h) = self.preprocess(im0)
61
-
62
- # Ort inference
63
- preds = self.session.run(None, {self.session.get_inputs()[0].name: im})
64
-
65
- # Post-process
66
- boxes, segments, masks = self.postprocess(
67
- preds,
68
- im0=im0,
69
- ratio=ratio,
70
- pad_w=pad_w,
71
- pad_h=pad_h,
72
- conf_threshold=conf_threshold,
73
- iou_threshold=iou_threshold,
74
- nm=nm,
75
- )
76
- return boxes, segments, masks
77
-
78
- def preprocess(self, img):
79
- """
80
- Pre-processes the input image.
81
-
82
- Args:
83
- img (Numpy.ndarray): image about to be processed.
84
-
85
- Returns:
86
- img_process (Numpy.ndarray): image preprocessed for inference.
87
- ratio (tuple): width, height ratios in letterbox.
88
- pad_w (float): width padding in letterbox.
89
- pad_h (float): height padding in letterbox.
90
- """
91
- # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
92
- shape = img.shape[:2] # original image shape
93
- new_shape = (self.model_height, self.model_width)
94
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
95
- ratio = r, r
96
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
97
- pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
98
- if shape[::-1] != new_unpad: # resize
99
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
100
- top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
101
- left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
102
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
103
-
104
- # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
105
- img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0
106
- img_process = img[None] if len(img.shape) == 3 else img
107
- return img_process, ratio, (pad_w, pad_h)
108
-
109
- def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
110
- """
111
- Post-process the prediction.
112
-
113
- Args:
114
- preds (Numpy.ndarray): predictions come from ort.session.run().
115
- im0 (Numpy.ndarray): [h, w, c] original input image.
116
- ratio (tuple): width, height ratios in letterbox.
117
- pad_w (float): width padding in letterbox.
118
- pad_h (float): height padding in letterbox.
119
- conf_threshold (float): conf threshold.
120
- iou_threshold (float): iou threshold.
121
- nm (int): the number of masks.
122
-
123
- Returns:
124
- boxes (List): list of bounding boxes.
125
- segments (List): list of segments.
126
- masks (np.ndarray): [N, H, W], output masks.
127
- """
128
- x, protos = preds[0], preds[1] # Two outputs: predictions and protos
129
-
130
- # Transpose dim 1: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm)
131
- x = np.einsum("bcn->bnc", x)
132
-
133
- # Predictions filtering by conf-threshold
134
- x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]
135
-
136
- # Create a new matrix which merge these(box, score, cls, nm) into one
137
- # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
138
- x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]
139
-
140
- # NMS filtering
141
- x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
142
-
143
- # Decode and return
144
- if len(x) > 0:
145
- # Bounding boxes format change: cxcywh -> xyxy
146
- x[..., [0, 1]] -= x[..., [2, 3]] / 2
147
- x[..., [2, 3]] += x[..., [0, 1]]
148
-
149
- # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
150
- x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
151
- x[..., :4] /= min(ratio)
152
-
153
- # Bounding boxes boundary clamp
154
- x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
155
- x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])
156
-
157
- # Process masks
158
- masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)
159
-
160
- # Masks -> Segments(contours)
161
- segments = self.masks2segments(masks)
162
- return x[..., :6], segments, masks # boxes, segments, masks
163
- else:
164
- return [], [], []
165
-
166
- @staticmethod
167
- def masks2segments(masks):
168
- """
169
- Takes a list of masks(n,h,w) and returns a list of segments(n,xy), from
170
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
171
-
172
- Args:
173
- masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).
174
-
175
- Returns:
176
- segments (List): list of segment masks.
177
- """
178
- segments = []
179
- for x in masks.astype("uint8"):
180
- c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0] # CHAIN_APPROX_SIMPLE
181
- if c:
182
- c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
183
- else:
184
- c = np.zeros((0, 2)) # no segments found
185
- segments.append(c.astype("float32"))
186
- return segments
187
-
188
- @staticmethod
189
- def crop_mask(masks, boxes):
190
- """
191
- Takes a mask and a bounding box, and returns a mask that is cropped to the bounding box, from
192
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
193
-
194
- Args:
195
- masks (Numpy.ndarray): [n, h, w] tensor of masks.
196
- boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.
197
-
198
- Returns:
199
- (Numpy.ndarray): The masks are being cropped to the bounding box.
200
- """
201
- n, h, w = masks.shape
202
- x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
203
- r = np.arange(w, dtype=x1.dtype)[None, None, :]
204
- c = np.arange(h, dtype=x1.dtype)[None, :, None]
205
- return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
206
-
207
- def process_mask(self, protos, masks_in, bboxes, im0_shape):
208
- """
209
- Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
210
- quality but is slower, from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
211
-
212
- Args:
213
- protos (numpy.ndarray): [mask_dim, mask_h, mask_w].
214
- masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.
215
- bboxes (numpy.ndarray): bboxes re-scaled to original image shape.
216
- im0_shape (tuple): the size of the input image (h,w,c).
217
-
218
- Returns:
219
- (numpy.ndarray): The upsampled masks.
220
- """
221
- c, mh, mw = protos.shape
222
- masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0) # HWN
223
- masks = np.ascontiguousarray(masks)
224
- masks = self.scale_mask(masks, im0_shape) # re-scale mask from P3 shape to original input image shape
225
- masks = np.einsum("HWN -> NHW", masks) # HWN -> NHW
226
- masks = self.crop_mask(masks, bboxes)
227
- return np.greater(masks, 0.5)
228
-
229
- @staticmethod
230
- def scale_mask(masks, im0_shape, ratio_pad=None):
231
- """
232
- Takes a mask, and resizes it to the original image size, from
233
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
234
-
235
- Args:
236
- masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
237
- im0_shape (tuple): the original image shape.
238
- ratio_pad (tuple): the ratio of the padding to the original image.
239
-
240
- Returns:
241
- masks (np.ndarray): The masks that are being returned.
242
- """
243
- im1_shape = masks.shape[:2]
244
- if ratio_pad is None: # calculate from im0_shape
245
- gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
246
- pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
247
- else:
248
- pad = ratio_pad[1]
249
-
250
- # Calculate tlbr of mask
251
- top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)) # y, x
252
- bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
253
- if len(masks.shape) < 2:
254
- raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
255
- masks = masks[top:bottom, left:right]
256
- masks = cv2.resize(
257
- masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR
258
- ) # INTER_CUBIC would be better
259
- if len(masks.shape) == 2:
260
- masks = masks[:, :, None]
261
- return masks
262
-
263
- def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
264
- """
265
- Draw and visualize results.
266
-
267
- Args:
268
- im (np.ndarray): original image, shape [h, w, c].
269
- bboxes (numpy.ndarray): [n, 4], n is number of bboxes.
270
- segments (List): list of segment masks.
271
- vis (bool): imshow using OpenCV.
272
- save (bool): save image annotated.
273
-
274
- Returns:
275
- None
276
- """
277
- # Draw rectangles and polygons
278
- im_canvas = im.copy()
279
- for (*box, conf, cls_), segment in zip(bboxes, segments):
280
- # draw contour and fill mask
281
- cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2) # white borderline
282
- cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True))
283
-
284
- # draw bbox rectangle
285
- cv2.rectangle(
286
- im,
287
- (int(box[0]), int(box[1])),
288
- (int(box[2]), int(box[3])),
289
- self.color_palette(int(cls_), bgr=True),
290
- 1,
291
- cv2.LINE_AA,
292
- )
293
- cv2.putText(
294
- im,
295
- f"{self.classes[cls_]}: {conf:.3f}",
296
- (int(box[0]), int(box[1] - 9)),
297
- cv2.FONT_HERSHEY_SIMPLEX,
298
- 0.7,
299
- self.color_palette(int(cls_), bgr=True),
300
- 2,
301
- cv2.LINE_AA,
302
- )
303
-
304
- # Mix image
305
- im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)
306
-
307
- # Show image
308
- if vis:
309
- cv2.imshow("demo", im)
310
- cv2.waitKey(0)
311
- cv2.destroyAllWindows()
312
-
313
- # Save image
314
- if save:
315
- cv2.imwrite("demo.jpg", im)
316
-
317
-
318
- if __name__ == "__main__":
319
- # Create an argument parser to handle command-line arguments
320
- parser = argparse.ArgumentParser()
321
- parser.add_argument("--model", type=str, required=True, help="Path to ONNX model")
322
- parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
323
- parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
324
- parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
325
- args = parser.parse_args()
326
-
327
- # Build model
328
- model = YOLOv8Seg(args.model)
329
-
330
- # Read image by OpenCV
331
- img = cv2.imread(args.source)
332
-
333
- # Inference
334
- boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou)
335
-
336
- # Draw bboxes and polygons
337
- if len(boxes) > 0:
338
- model.draw_and_visualize(img, boxes, segments, vis=False, save=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-TFLite-Python/README.md DELETED
@@ -1,55 +0,0 @@
1
- # YOLOv8 - TFLite Runtime
2
-
3
- This example shows how to run inference with YOLOv8 TFLite model. It supports FP32, FP16 and INT8 models.
4
-
5
- ## Installation
6
-
7
- ### Installing `tflite-runtime`
8
-
9
- To load TFLite models, install the `tflite-runtime` package using:
10
-
11
- ```bash
12
- pip install tflite-runtime
13
- ```
14
-
15
- ### Installing `tensorflow-gpu` (For NVIDIA GPU Users)
16
-
17
- Leverage GPU acceleration with NVIDIA GPUs by installing `tensorflow-gpu`:
18
-
19
- ```bash
20
- pip install tensorflow-gpu
21
- ```
22
-
23
- **Note:** Ensure you have compatible GPU drivers installed on your system.
24
-
25
- ### Installing `tensorflow` (CPU Version)
26
-
27
- For CPU usage or non-NVIDIA GPUs, install TensorFlow with:
28
-
29
- ```bash
30
- pip install tensorflow
31
- ```
32
-
33
- ## Usage
34
-
35
- Follow these instructions to run YOLOv8 after successful installation.
36
-
37
- Convert the YOLOv8 model to TFLite format:
38
-
39
- ```bash
40
- yolo export model=yolov8n.pt imgsz=640 format=tflite int8
41
- ```
42
-
43
- Locate the TFLite model in `yolov8n_saved_model`. Then, execute the following in your terminal:
44
-
45
- ```bash
46
- python main.py --model yolov8n_full_integer_quant.tflite --img image.jpg --conf 0.25 --iou 0.45 --metadata "metadata.yaml"
47
- ```
48
-
49
- Replace `best_full_integer_quant.tflite` with the TFLite model path, `image.jpg` with the input image path, `metadata.yaml` with the one generated by `ultralytics` during export, and adjust the confidence (conf) and IoU thresholds (iou) as necessary.
50
-
51
- ### Output
52
-
53
- The output would show the detections along with the class labels and confidences of each detected object.
54
-
55
- ![image](https://github.com/wamiqraza/Attribute-recognition-and-reidentification-Market1501-dataset/blob/main/img/bus.jpg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/YOLOv8-TFLite-Python/main.py DELETED
@@ -1,221 +0,0 @@
1
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
-
3
- import argparse
4
- from typing import Tuple, Union
5
-
6
- import cv2
7
- import numpy as np
8
- import tensorflow as tf
9
- import yaml
10
-
11
- from ultralytics.utils import ASSETS
12
-
13
- try:
14
- from tflite_runtime.interpreter import Interpreter
15
- except ImportError:
16
- import tensorflow as tf
17
-
18
- Interpreter = tf.lite.Interpreter
19
-
20
-
21
- class YOLOv8TFLite:
22
- """
23
- YOLOv8TFLite.
24
-
25
- A class for performing object detection using the YOLOv8 model with TensorFlow Lite.
26
-
27
- Attributes:
28
- model (str): Path to the TensorFlow Lite model file.
29
- conf (float): Confidence threshold for filtering detections.
30
- iou (float): Intersection over Union threshold for non-maximum suppression.
31
- metadata (Optional[str]): Path to the metadata file, if any.
32
-
33
- Methods:
34
- detect(img_path: str) -> np.ndarray:
35
- Performs inference and returns the output image with drawn detections.
36
- """
37
-
38
- def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
39
- """
40
- Initializes an instance of the YOLOv8TFLite class.
41
-
42
- Args:
43
- model (str): Path to the TFLite model.
44
- conf (float, optional): Confidence threshold for filtering detections. Defaults to 0.25.
45
- iou (float, optional): IoU (Intersection over Union) threshold for non-maximum suppression. Defaults to 0.45.
46
- metadata (Union[str, None], optional): Path to the metadata file or None if not used. Defaults to None.
47
- """
48
- self.conf = conf
49
- self.iou = iou
50
- if metadata is None:
51
- self.classes = {i: i for i in range(1000)}
52
- else:
53
- with open(metadata) as f:
54
- self.classes = yaml.safe_load(f)["names"]
55
- np.random.seed(42)
56
- self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))
57
-
58
- self.model = Interpreter(model_path=model)
59
- self.model.allocate_tensors()
60
-
61
- input_details = self.model.get_input_details()[0]
62
-
63
- self.in_width, self.in_height = input_details["shape"][1:3]
64
- self.in_index = input_details["index"]
65
- self.in_scale, self.in_zero_point = input_details["quantization"]
66
- self.int8 = input_details["dtype"] == np.int8
67
-
68
- output_details = self.model.get_output_details()[0]
69
- self.out_index = output_details["index"]
70
- self.out_scale, self.out_zero_point = output_details["quantization"]
71
-
72
- def letterbox(self, img: np.ndarray, new_shape: Tuple = (640, 640)) -> Tuple[np.ndarray, Tuple[float, float]]:
73
- """Resizes and reshapes images while maintaining aspect ratio by adding padding, suitable for YOLO models."""
74
- shape = img.shape[:2] # current shape [height, width]
75
-
76
- # Scale ratio (new / old)
77
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
78
-
79
- # Compute padding
80
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
81
- dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
82
-
83
- if shape[::-1] != new_unpad: # resize
84
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
85
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
86
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
87
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
88
-
89
- return img, (top / img.shape[0], left / img.shape[1])
90
-
91
- def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
92
- """
93
- Draws bounding boxes and labels on the input image based on the detected objects.
94
-
95
- Args:
96
- img (np.ndarray): The input image to draw detections on.
97
- box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
98
- score (np.float32): Corresponding detection score.
99
- class_id (int): Class ID for the detected object.
100
-
101
- Returns:
102
- None
103
- """
104
- x1, y1, w, h = box
105
- color = self.color_palette[class_id]
106
-
107
- cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
108
-
109
- label = f"{self.classes[class_id]}: {score:.2f}"
110
-
111
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
112
-
113
- label_x = x1
114
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
115
-
116
- cv2.rectangle(
117
- img,
118
- (int(label_x), int(label_y - label_height)),
119
- (int(label_x + label_width), int(label_y + label_height)),
120
- color,
121
- cv2.FILLED,
122
- )
123
-
124
- cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
125
-
126
- def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
127
- """
128
- Preprocesses the input image before performing inference.
129
-
130
- Args:
131
- img (np.ndarray): The input image to be preprocessed.
132
-
133
- Returns:
134
- Tuple[np.ndarray, Tuple[float, float]]: A tuple containing:
135
- - The preprocessed image (np.ndarray).
136
- - A tuple of two float values representing the padding applied (top/bottom, left/right).
137
- """
138
- img, pad = self.letterbox(img, (self.in_width, self.in_height))
139
- img = img[..., ::-1][None] # N,H,W,C for TFLite
140
- img = np.ascontiguousarray(img)
141
- img = img.astype(np.float32)
142
- return img / 255, pad
143
-
144
- def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
145
- """
146
- Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
147
-
148
- Args:
149
- img (numpy.ndarray): The input image.
150
- outputs (numpy.ndarray): The output of the model.
151
- pad (Tuple[float, float]): Padding used by letterbox.
152
-
153
- Returns:
154
- numpy.ndarray: The input image with detections drawn on it.
155
- """
156
- outputs[:, 0] -= pad[1]
157
- outputs[:, 1] -= pad[0]
158
- outputs[:, :4] *= max(img.shape)
159
-
160
- outputs = outputs.transpose(0, 2, 1)
161
- outputs[..., 0] -= outputs[..., 2] / 2
162
- outputs[..., 1] -= outputs[..., 3] / 2
163
-
164
- for out in outputs:
165
- scores = out[:, 4:].max(-1)
166
- keep = scores > self.conf
167
- boxes = out[keep, :4]
168
- scores = scores[keep]
169
- class_ids = out[keep, 4:].argmax(-1)
170
-
171
- indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()
172
-
173
- [self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]
174
-
175
- return img
176
-
177
- def detect(self, img_path: str) -> np.ndarray:
178
- """
179
- Performs inference using a TFLite model and returns the output image with drawn detections.
180
-
181
- Args:
182
- img_path (str): The path to the input image file.
183
-
184
- Returns:
185
- np.ndarray: The output image with drawn detections.
186
- """
187
- img = cv2.imread(img_path)
188
- x, pad = self.preprocess(img)
189
- if self.int8:
190
- x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
191
- self.model.set_tensor(self.in_index, x)
192
-
193
- self.model.invoke()
194
-
195
- y = self.model.get_tensor(self.out_index)
196
-
197
- if self.int8:
198
- y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale
199
-
200
- return self.postprocess(img, y, pad)
201
-
202
-
203
- if __name__ == "__main__":
204
- parser = argparse.ArgumentParser()
205
- parser.add_argument(
206
- "--model",
207
- type=str,
208
- default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
209
- help="Path to TFLite model.",
210
- )
211
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
212
- parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
213
- parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
214
- parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
215
- args = parser.parse_args()
216
-
217
- detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
218
- result = detector.detect(str(ASSETS / "bus.jpg"))
219
-
220
- cv2.imshow("Output", result)
221
- cv2.waitKey(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/heatmaps.ipynb DELETED
@@ -1,186 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "PN1cAxdvd61e"
7
- },
8
- "source": [
9
- "<div align=\"center\">\n",
10
- "\n",
11
- " <a href=\"https://ultralytics.com/yolo\" target=\"_blank\">\n",
12
- " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n",
13
- "\n",
14
- " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [العربية](https://docs.ultralytics.com/ar/)\n",
15
- "\n",
16
- " <a href=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml\"><img src=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg\" alt=\"Ultralytics CI\"></a>\n",
17
- " <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n",
18
- " <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
19
- " <a href=\"https://www.kaggle.com/models/ultralytics/yolo11\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
20
- " <a href=\"https://ultralytics.com/discord\"><img alt=\"Discord\" src=\"https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue\"></a>\n",
21
- "\n",
22
- "Welcome to the Ultralytics YOLO11 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLO11</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLO11 and understand its features and capabilities.\n",
23
- "\n",
24
- "YOLO11 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n",
25
- "\n",
26
- "We hope that the resources in this notebook will help you get the most out of YOLO11. Please browse the YOLO11 <a href=\"https://docs.ultralytics.com/guides/heatmaps\">Heatmap Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
27
- "\n",
28
- "</div>"
29
- ]
30
- },
31
- {
32
- "cell_type": "markdown",
33
- "metadata": {
34
- "id": "o68Sg1oOeZm2"
35
- },
36
- "source": [
37
- "# Setup\n",
38
- "\n",
39
- "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware.\n",
40
- "\n",
41
- "[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": 1,
47
- "metadata": {
48
- "colab": {
49
- "base_uri": "https://localhost:8080/"
50
- },
51
- "id": "9dSwz_uOReMI",
52
- "outputId": "99866c77-e210-41e1-d581-8508371ce634"
53
- },
54
- "outputs": [
55
- {
56
- "name": "stdout",
57
- "output_type": "stream",
58
- "text": [
59
- "Ultralytics 8.2.17 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (T4, 15102MiB)\n",
60
- "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 29.8/78.2 GB disk)\n"
61
- ]
62
- }
63
- ],
64
- "source": [
65
- "%pip install ultralytics\n",
66
- "import ultralytics\n",
67
- "\n",
68
- "ultralytics.checks()"
69
- ]
70
- },
71
- {
72
- "cell_type": "markdown",
73
- "metadata": {
74
- "id": "m7VkxQ2aeg7k"
75
- },
76
- "source": [
77
- "# Introduction to Heatmaps\n",
78
- "\n",
79
- "A heatmap generated with [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics/) transforms complex data into a vibrant, color-coded matrix. This visual tool employs a spectrum of colors to represent varying data values, where warmer hues indicate higher intensities and cooler tones signify lower values. Heatmaps excel in visualizing intricate data patterns, correlations, and anomalies, offering an accessible and engaging approach to data interpretation across diverse domains.\n",
80
- "\n",
81
- "## Real World Applications\n",
82
- "\n",
83
- "| Transportation | Retail |\n",
84
- "|:-----------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------:|\n",
85
- "| ![Ultralytics YOLO11 Transportation Heatmap](https://github.com/RizwanMunawar/ultralytics/assets/62513924/288d7053-622b-4452-b4e4-1f41aeb764aa) | ![Ultralytics YOLO11 Retail Heatmap](https://github.com/RizwanMunawar/ultralytics/assets/62513924/edef75ad-50a7-4c0a-be4a-a66cdfc12802) |\n",
86
- "| Ultralytics YOLO11 Transportation Heatmap | Ultralytics YOLO11 Retail Heatmap |\n"
87
- ]
88
- },
89
- {
90
- "cell_type": "code",
91
- "execution_count": null,
92
- "metadata": {
93
- "id": "Cx-u59HQdu2o"
94
- },
95
- "outputs": [],
96
- "source": [
97
- "import cv2\n",
98
- "\n",
99
- "from ultralytics import solutions\n",
100
- "\n",
101
- "# Open video file\n",
102
- "cap = cv2.VideoCapture(\"path/to/video/file.mp4\")\n",
103
- "assert cap.isOpened(), \"Error reading video file\"\n",
104
- "\n",
105
- "# Get video properties\n",
106
- "w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))\n",
107
- "\n",
108
- "# Initialize video writer\n",
109
- "video_writer = cv2.VideoWriter(\"heatmap_output.avi\", cv2.VideoWriter_fourcc(*\"mp4v\"), fps, (w, h))\n",
110
- "\n",
111
- "# Initialize heatmap object\n",
112
- "heatmap_obj = solutions.Heatmap(\n",
113
- " colormap=cv2.COLORMAP_PARULA, # Color of the heatmap\n",
114
- " show=True, # Display the image during processing\n",
115
- " model=\"yolo11n.pt\", # Ultralytics YOLO11 model file\n",
116
- ")\n",
117
- "\n",
118
- "while cap.isOpened():\n",
119
- " success, im0 = cap.read()\n",
120
- " if not success:\n",
121
- " print(\"Video frame is empty or video processing has been successfully completed.\")\n",
122
- " break\n",
123
- "\n",
124
- " # Generate heatmap on the frame\n",
125
- " im0 = heatmap_obj.generate_heatmap(im0)\n",
126
- "\n",
127
- " # Write the frame to the output video\n",
128
- " video_writer.write(im0)\n",
129
- "\n",
130
- "# Release resources\n",
131
- "cap.release()\n",
132
- "video_writer.release()\n",
133
- "cv2.destroyAllWindows()"
134
- ]
135
- },
136
- {
137
- "cell_type": "markdown",
138
- "metadata": {
139
- "id": "QrlKg-y3fEyD"
140
- },
141
- "source": [
142
- "# Additional Resources\n",
143
- "\n",
144
- "## Community Support\n",
145
- "\n",
146
- "For more information on using heatmaps with Ultralytics, you can explore the comprehensive [Ultralytics Heatmaps Docs](https://docs.ultralytics.com/guides/heatmaps/). This guide covers everything from basic concepts to advanced techniques, ensuring you get the most out of your heatmap visualizations.\n",
147
- "\n",
148
- "## Ultralytics ⚡ Resources\n",
149
- "\n",
150
- "At Ultralytics, we are committed to providing cutting-edge AI solutions. Here are some key resources to learn more about our company and get involved with our community:\n",
151
- "\n",
152
- "- [Ultralytics HUB](https://ultralytics.com/hub): Simplify your AI projects with Ultralytics HUB, our no-code tool for effortless YOLO training and deployment.\n",
153
- "- [Ultralytics Licensing](https://ultralytics.com/license): Review our licensing terms to understand how you can use our software in your projects.\n",
154
- "- [About Us](https://ultralytics.com/about): Discover our mission, vision, and the story behind Ultralytics.\n",
155
- "- [Join Our Team](https://ultralytics.com/work): Explore career opportunities and join our team of talented professionals.\n",
156
- "\n",
157
- "## YOLO11 🚀 Resources\n",
158
- "\n",
159
- "YOLO11 is the latest evolution in the YOLO series, offering state-of-the-art performance in object detection and image segmentation. Here are some essential resources to help you get started with YOLO11:\n",
160
- "\n",
161
- "- [GitHub](https://github.com/ultralytics/ultralytics): Access the YOLO11 repository on GitHub, where you can find the source code, contribute to the project, and report issues.\n",
162
- "- [Docs](https://docs.ultralytics.com/): Explore the official documentation for YOLO11, including installation guides, tutorials, and detailed API references.\n",
163
- "- [Discord](https://ultralytics.com/discord): Join our Discord community to connect with other users, share your projects, and get help from the Ultralytics team.\n",
164
- "\n",
165
- "These resources are designed to help you leverage the full potential of Ultralytics' offerings and YOLO11. Whether you're a beginner or an experienced developer, you'll find the information and support you need to succeed."
166
- ]
167
- }
168
- ],
169
- "metadata": {
170
- "accelerator": "GPU",
171
- "colab": {
172
- "gpuType": "T4",
173
- "provenance": [],
174
- "toc_visible": true
175
- },
176
- "kernelspec": {
177
- "display_name": "Python 3",
178
- "name": "python3"
179
- },
180
- "language_info": {
181
- "name": "python"
182
- }
183
- },
184
- "nbformat": 4,
185
- "nbformat_minor": 0
186
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/hub.ipynb DELETED
@@ -1,115 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "FIzICjaph_Wy"
7
- },
8
- "source": [
9
- "<a align=\"center\" href=\"https://ultralytics.com/hub\" target=\"_blank\">\n",
10
- "<img width=\"1024\", src=\"https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png\"></a>\n",
11
- "\n",
12
- "<div align=\"center\">\n",
13
- "\n",
14
- "[中文](https://docs.ultralytics.com/zh/hub/) | [한국어](https://docs.ultralytics.com/ko/hub/) | [日本語](https://docs.ultralytics.com/ja/hub/) | [Русский](https://docs.ultralytics.com/ru/hub/) | [Deutsch](https://docs.ultralytics.com/de/hub/) | [Français](https://docs.ultralytics.com/fr/hub/) | [Español](https://docs.ultralytics.com/es/hub/) | [Português](https://docs.ultralytics.com/pt/hub/) | [Türkçe](https://docs.ultralytics.com/tr/hub/) | [Tiếng Việt](https://docs.ultralytics.com/vi/hub/) | [العربية](https://docs.ultralytics.com/ar/hub/)\n",
15
- "\n",
16
- " <a href=\"https://github.com/ultralytics/hub/actions/workflows/ci.yml\"><img src=\"https://github.com/ultralytics/hub/actions/workflows/ci.yml/badge.svg\" alt=\"CI CPU\"></a>\n",
17
- " <a href=\"https://colab.research.google.com/github/ultralytics/hub/blob/main/hub.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
18
- "\n",
19
- " <a href=\"https://ultralytics.com/discord\"><img alt=\"Discord\" src=\"https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue\"></a>\n",
20
- " <a href=\"https://community.ultralytics.com\"><img alt=\"Ultralytics Forums\" src=\"https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue\"></a>\n",
21
- " <a href=\"https://reddit.com/r/ultralytics\"><img alt=\"Ultralytics Reddit\" src=\"https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue\"></a>\n",
22
- "\n",
23
- "Welcome to the [Ultralytics](https://ultralytics.com/) HUB notebook!\n",
24
- "\n",
25
- "This notebook allows you to train Ultralytics [YOLO](https://github.com/ultralytics/ultralytics) 🚀 models using [HUB](https://hub.ultralytics.com/). Please browse the HUB <a href=\"https://docs.ultralytics.com/hub/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/hub/issues/new/choose\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
26
- "</div>"
27
- ]
28
- },
29
- {
30
- "cell_type": "markdown",
31
- "metadata": {
32
- "id": "eRQ2ow94MiOv"
33
- },
34
- "source": [
35
- "# Setup\n",
36
- "\n",
37
- "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware.\n",
38
- "\n",
39
- "[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)"
40
- ]
41
- },
42
- {
43
- "cell_type": "code",
44
- "execution_count": 1,
45
- "metadata": {
46
- "colab": {
47
- "base_uri": "https://localhost:8080/"
48
- },
49
- "id": "FyDnXd-n4c7Y",
50
- "outputId": "e1d713ec-e8a6-4422-fe61-c76ec9f03df5"
51
- },
52
- "outputs": [
53
- {
54
- "name": "stdout",
55
- "output_type": "stream",
56
- "text": [
57
- "Ultralytics 8.2.3 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (T4, 15102MiB)\n",
58
- "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 28.8/78.2 GB disk)\n"
59
- ]
60
- }
61
- ],
62
- "source": [
63
- "%pip install ultralytics # install\n",
64
- "from ultralytics import YOLO, checks, hub\n",
65
- "\n",
66
- "checks() # checks"
67
- ]
68
- },
69
- {
70
- "cell_type": "markdown",
71
- "metadata": {
72
- "id": "cQ9BwaAqxAm4"
73
- },
74
- "source": [
75
- "# Start\n",
76
- "\n",
77
- "⚡ Login with your API key, load your YOLO 🚀 model and start training in 3 lines of code!"
78
- ]
79
- },
80
- {
81
- "cell_type": "code",
82
- "execution_count": null,
83
- "metadata": {
84
- "id": "XSlZaJ9Iw_iZ"
85
- },
86
- "outputs": [],
87
- "source": [
88
- "# Log in to HUB using your API key (https://hub.ultralytics.com/settings?tab=api+keys)\n",
89
- "hub.login(\"YOUR_API_KEY\")\n",
90
- "\n",
91
- "# Load your model from HUB (replace 'YOUR_MODEL_ID' with your model ID)\n",
92
- "model = YOLO(\"https://hub.ultralytics.com/models/YOUR_MODEL_ID\")\n",
93
- "\n",
94
- "# Train the model\n",
95
- "results = model.train()"
96
- ]
97
- }
98
- ],
99
- "metadata": {
100
- "accelerator": "GPU",
101
- "colab": {
102
- "name": "Ultralytics HUB",
103
- "provenance": []
104
- },
105
- "kernelspec": {
106
- "display_name": "Python 3",
107
- "name": "python3"
108
- },
109
- "language_info": {
110
- "name": "python"
111
- }
112
- },
113
- "nbformat": 4,
114
- "nbformat_minor": 0
115
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/object_counting.ipynb DELETED
@@ -1,200 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "PN1cAxdvd61e"
7
- },
8
- "source": [
9
- "<div align=\"center\">\n",
10
- "\n",
11
- " <a href=\"https://ultralytics.com/yolo\" target=\"_blank\">\n",
12
- " <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n",
13
- "\n",
14
- " [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [العربية](https://docs.ultralytics.com/ar/)\n",
15
- "\n",
16
- " <a href=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml\"><img src=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg\" alt=\"Ultralytics CI\"></a>\n",
17
- " <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n",
18
- " <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
19
- " <a href=\"https://www.kaggle.com/models/ultralytics/yolo11\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
20
- " <a href=\"https://ultralytics.com/discord\"><img alt=\"Discord\" src=\"https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue\"></a>\n",
21
- "\n",
22
- "Welcome to the Ultralytics YOLO11 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLO11</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLO11 and understand its features and capabilities.\n",
23
- "\n",
24
- "YOLO11 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n",
25
- "\n",
26
- "We hope that the resources in this notebook will help you get the most out of YOLO11. Please browse the YOLO11 <a href=\"https://docs.ultralytics.com/guides/object-counting/\"> Object Counting Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
27
- "\n",
28
- "</div>"
29
- ]
30
- },
31
- {
32
- "cell_type": "markdown",
33
- "metadata": {
34
- "id": "o68Sg1oOeZm2"
35
- },
36
- "source": [
37
- "# Setup\n",
38
- "\n",
39
- "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware.\n",
40
- "\n",
41
- "[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": 1,
47
- "metadata": {
48
- "colab": {
49
- "base_uri": "https://localhost:8080/"
50
- },
51
- "id": "9dSwz_uOReMI",
52
- "outputId": "fd3bab88-2f25-46c0-cae9-04d2beedc0c1"
53
- },
54
- "outputs": [
55
- {
56
- "name": "stdout",
57
- "output_type": "stream",
58
- "text": [
59
- "Ultralytics 8.2.18 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (T4, 15102MiB)\n",
60
- "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 29.8/78.2 GB disk)\n"
61
- ]
62
- }
63
- ],
64
- "source": [
65
- "%pip install ultralytics\n",
66
- "import ultralytics\n",
67
- "\n",
68
- "ultralytics.checks()"
69
- ]
70
- },
71
- {
72
- "cell_type": "markdown",
73
- "metadata": {
74
- "id": "m7VkxQ2aeg7k"
75
- },
76
- "source": [
77
- "# Object Counting using Ultralytics YOLO11 🚀\n",
78
- "\n",
79
- "## What is Object Counting?\n",
80
- "\n",
81
- "Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLO11 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities.\n",
82
- "\n",
83
- "## Advantages of Object Counting?\n",
84
- "\n",
85
- "- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management.\n",
86
- "- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.\n",
87
- "- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains.\n",
88
- "\n",
89
- "## Real World Applications\n",
90
- "\n",
91
- "| Logistics | Aquaculture |\n",
92
- "|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|\n",
93
- "| ![Conveyor Belt Packets Counting Using Ultralytics YOLO11](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757) | ![Fish Counting in Sea using Ultralytics YOLO11](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191) |\n",
94
- "| Conveyor Belt Packets Counting Using Ultralytics YOLO11 | Fish Counting in Sea using Ultralytics YOLO11 |\n"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": null,
100
- "metadata": {
101
- "id": "Cx-u59HQdu2o"
102
- },
103
- "outputs": [],
104
- "source": [
105
- "import cv2\n",
106
- "\n",
107
- "from ultralytics import solutions\n",
108
- "\n",
109
- "# Open the video file\n",
110
- "cap = cv2.VideoCapture(\"path/to/video/file.mp4\")\n",
111
- "assert cap.isOpened(), \"Error reading video file\"\n",
112
- "\n",
113
- "# Get video properties: width, height, and frames per second (fps)\n",
114
- "w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))\n",
115
- "\n",
116
- "# Define points for a line or region of interest in the video frame\n",
117
- "line_points = [(20, 400), (1080, 400)] # Line coordinates\n",
118
- "\n",
119
- "# Initialize the video writer to save the output video\n",
120
- "video_writer = cv2.VideoWriter(\"object_counting_output.avi\", cv2.VideoWriter_fourcc(*\"mp4v\"), fps, (w, h))\n",
121
- "\n",
122
- "# Initialize the Object Counter with visualization options and other parameters\n",
123
- "counter = solutions.ObjectCounter(\n",
124
- " show=True, # Display the image during processing\n",
125
- " region=line_points, # Region of interest points\n",
126
- " model=\"yolo11n.pt\", # Ultralytics YOLO11 model file\n",
127
- " line_width=2, # Thickness of the lines and bounding boxes\n",
128
- ")\n",
129
- "\n",
130
- "# Process video frames in a loop\n",
131
- "while cap.isOpened():\n",
132
- " success, im0 = cap.read()\n",
133
- " if not success:\n",
134
- " print(\"Video frame is empty or video processing has been successfully completed.\")\n",
135
- " break\n",
136
- "\n",
137
- " # Use the Object Counter to count objects in the frame and get the annotated image\n",
138
- " im0 = counter.count(im0)\n",
139
- "\n",
140
- " # Write the annotated frame to the output video\n",
141
- " video_writer.write(im0)\n",
142
- "\n",
143
- "# Release the video capture and writer objects\n",
144
- "cap.release()\n",
145
- "video_writer.release()\n",
146
- "\n",
147
- "# Close all OpenCV windows\n",
148
- "cv2.destroyAllWindows()"
149
- ]
150
- },
151
- {
152
- "cell_type": "markdown",
153
- "metadata": {
154
- "id": "QrlKg-y3fEyD"
155
- },
156
- "source": [
157
- "# Additional Resources\n",
158
- "\n",
159
- "## Community Support\n",
160
- "\n",
161
- "For more information on counting objects with Ultralytics, you can explore the comprehensive [Ultralytics Object Counting Docs](https://docs.ultralytics.com/guides/object-counting/). This guide covers everything from basic concepts to advanced techniques, ensuring you get the most out of counting and visualization.\n",
162
- "\n",
163
- "## Ultralytics ⚡ Resources\n",
164
- "\n",
165
- "At Ultralytics, we are committed to providing cutting-edge AI solutions. Here are some key resources to learn more about our company and get involved with our community:\n",
166
- "\n",
167
- "- [Ultralytics HUB](https://ultralytics.com/hub): Simplify your AI projects with Ultralytics HUB, our no-code tool for effortless YOLO training and deployment.\n",
168
- "- [Ultralytics Licensing](https://ultralytics.com/license): Review our licensing terms to understand how you can use our software in your projects.\n",
169
- "- [About Us](https://ultralytics.com/about): Discover our mission, vision, and the story behind Ultralytics.\n",
170
- "- [Join Our Team](https://ultralytics.com/work): Explore career opportunities and join our team of talented professionals.\n",
171
- "\n",
172
- "## YOLO11 🚀 Resources\n",
173
- "\n",
174
- "YOLO11 is the latest evolution in the YOLO series, offering state-of-the-art performance in object detection and image segmentation. Here are some essential resources to help you get started with YOLO11:\n",
175
- "\n",
176
- "- [GitHub](https://github.com/ultralytics/ultralytics): Access the YOLO11 repository on GitHub, where you can find the source code, contribute to the project, and report issues.\n",
177
- "- [Docs](https://docs.ultralytics.com/): Explore the official documentation for YOLO11, including installation guides, tutorials, and detailed API references.\n",
178
- "- [Discord](https://ultralytics.com/discord): Join our Discord community to connect with other users, share your projects, and get help from the Ultralytics team.\n",
179
- "\n",
180
- "These resources are designed to help you leverage the full potential of Ultralytics' offerings and YOLO11. Whether you're a beginner or an experienced developer, you'll find the information and support you need to succeed."
181
- ]
182
- }
183
- ],
184
- "metadata": {
185
- "accelerator": "GPU",
186
- "colab": {
187
- "gpuType": "T4",
188
- "provenance": []
189
- },
190
- "kernelspec": {
191
- "display_name": "Python 3",
192
- "name": "python3"
193
- },
194
- "language_info": {
195
- "name": "python"
196
- }
197
- },
198
- "nbformat": 4,
199
- "nbformat_minor": 0
200
- }