Spaces:
Running
Running
# Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
"""Monkey patches to update/extend functionality of existing functions.""" | |
import time | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------ | |
_imshow = cv2.imshow # copy to avoid recursion errors | |
def imread(filename: str, flags: int = cv2.IMREAD_COLOR): | |
""" | |
Read an image from a file. | |
Args: | |
filename (str): Path to the file to read. | |
flags (int, optional): Flag that can take values of cv2.IMREAD_*. Defaults to cv2.IMREAD_COLOR. | |
Returns: | |
(np.ndarray): The read image. | |
""" | |
return cv2.imdecode(np.fromfile(filename, np.uint8), flags) | |
def imwrite(filename: str, img: np.ndarray, params=None): | |
""" | |
Write an image to a file. | |
Args: | |
filename (str): Path to the file to write. | |
img (np.ndarray): Image to write. | |
params (list of ints, optional): Additional parameters. See OpenCV documentation. | |
Returns: | |
(bool): True if the file was written, False otherwise. | |
""" | |
try: | |
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename) | |
return True | |
except Exception: | |
return False | |
def imshow(winname: str, mat: np.ndarray): | |
""" | |
Displays an image in the specified window. | |
Args: | |
winname (str): Name of the window. | |
mat (np.ndarray): Image to be shown. | |
""" | |
_imshow(winname.encode("unicode_escape").decode(), mat) | |
# PyTorch functions ---------------------------------------------------------------------------------------------------- | |
_torch_load = torch.load # copy to avoid recursion errors | |
_torch_save = torch.save | |
def torch_load(*args, **kwargs): | |
""" | |
Load a PyTorch model with updated arguments to avoid warnings. | |
This function wraps torch.load and adds the 'weights_only' argument for PyTorch 1.13.0+ to prevent warnings. | |
Args: | |
*args (Any): Variable length argument list to pass to torch.load. | |
**kwargs (Any): Arbitrary keyword arguments to pass to torch.load. | |
Returns: | |
(Any): The loaded PyTorch object. | |
Note: | |
For PyTorch versions 2.0 and above, this function automatically sets 'weights_only=False' | |
if the argument is not provided, to avoid deprecation warnings. | |
""" | |
from ultralytics.utils.torch_utils import TORCH_1_13 | |
if TORCH_1_13 and "weights_only" not in kwargs: | |
kwargs["weights_only"] = False | |
return _torch_load(*args, **kwargs) | |
def torch_save(*args, **kwargs): | |
""" | |
Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and | |
exponential standoff in case of save failure. | |
Args: | |
*args (tuple): Positional arguments to pass to torch.save. | |
**kwargs (Any): Keyword arguments to pass to torch.save. | |
""" | |
for i in range(4): # 3 retries | |
try: | |
return _torch_save(*args, **kwargs) | |
except RuntimeError as e: # unable to save, possibly waiting for device to flush or antivirus scan | |
if i == 3: | |
raise e | |
time.sleep((2**i) / 2) # exponential standoff: 0.5s, 1.0s, 2.0s | |