Spaces:
Running
Running
# Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from ultralytics.models.yolo.detect import DetectionValidator | |
from ultralytics.utils import LOGGER, NUM_THREADS, ops | |
from ultralytics.utils.checks import check_requirements | |
from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou | |
from ultralytics.utils.plotting import output_to_target, plot_images | |
class SegmentationValidator(DetectionValidator): | |
""" | |
A class extending the DetectionValidator class for validation based on a segmentation model. | |
Example: | |
```python | |
from ultralytics.models.yolo.segment import SegmentationValidator | |
args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml") | |
validator = SegmentationValidator(args=args) | |
validator() | |
``` | |
""" | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" | |
super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
self.plot_masks = None | |
self.process = None | |
self.args.task = "segment" | |
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) | |
def preprocess(self, batch): | |
"""Preprocesses batch by converting masks to float and sending to device.""" | |
batch = super().preprocess(batch) | |
batch["masks"] = batch["masks"].to(self.device).float() | |
return batch | |
def init_metrics(self, model): | |
"""Initialize metrics and select mask processing function based on save_json flag.""" | |
super().init_metrics(model) | |
self.plot_masks = [] | |
if self.args.save_json: | |
check_requirements("pycocotools>=2.0.6") | |
# more accurate vs faster | |
self.process = ops.process_mask_native if self.args.save_json or self.args.save_txt else ops.process_mask | |
self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[]) | |
def get_desc(self): | |
"""Return a formatted description of evaluation metrics.""" | |
return ("%22s" + "%11s" * 10) % ( | |
"Class", | |
"Images", | |
"Instances", | |
"Box(P", | |
"R", | |
"mAP50", | |
"mAP50-95)", | |
"Mask(P", | |
"R", | |
"mAP50", | |
"mAP50-95)", | |
) | |
def postprocess(self, preds): | |
"""Post-processes YOLO predictions and returns output detections with proto.""" | |
p = ops.non_max_suppression( | |
preds[0], | |
self.args.conf, | |
self.args.iou, | |
labels=self.lb, | |
multi_label=True, | |
agnostic=self.args.single_cls or self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
nc=self.nc, | |
) | |
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported | |
return p, proto | |
def _prepare_batch(self, si, batch): | |
"""Prepares a batch for training or inference by processing images and targets.""" | |
prepared_batch = super()._prepare_batch(si, batch) | |
midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si | |
prepared_batch["masks"] = batch["masks"][midx] | |
return prepared_batch | |
def _prepare_pred(self, pred, pbatch, proto): | |
"""Prepares a batch for training or inference by processing images and targets.""" | |
predn = super()._prepare_pred(pred, pbatch) | |
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"]) | |
return predn, pred_masks | |
def update_metrics(self, preds, batch): | |
"""Metrics.""" | |
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): | |
self.seen += 1 | |
npr = len(pred) | |
stat = dict( | |
conf=torch.zeros(0, device=self.device), | |
pred_cls=torch.zeros(0, device=self.device), | |
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), | |
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), | |
) | |
pbatch = self._prepare_batch(si, batch) | |
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") | |
nl = len(cls) | |
stat["target_cls"] = cls | |
stat["target_img"] = cls.unique() | |
if npr == 0: | |
if nl: | |
for k in self.stats.keys(): | |
self.stats[k].append(stat[k]) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) | |
continue | |
# Masks | |
gt_masks = pbatch.pop("masks") | |
# Predictions | |
if self.args.single_cls: | |
pred[:, 5] = 0 | |
predn, pred_masks = self._prepare_pred(pred, pbatch, proto) | |
stat["conf"] = predn[:, 4] | |
stat["pred_cls"] = predn[:, 5] | |
# Evaluate | |
if nl: | |
stat["tp"] = self._process_batch(predn, bbox, cls) | |
stat["tp_m"] = self._process_batch( | |
predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True | |
) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(predn, bbox, cls) | |
for k in self.stats.keys(): | |
self.stats[k].append(stat[k]) | |
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) | |
if self.args.plots and self.batch_i < 3: | |
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot | |
# Save | |
if self.args.save_json: | |
self.pred_to_json( | |
predn, | |
batch["im_file"][si], | |
ops.scale_image( | |
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), | |
pbatch["ori_shape"], | |
ratio_pad=batch["ratio_pad"][si], | |
), | |
) | |
if self.args.save_txt: | |
self.save_one_txt( | |
predn, | |
pred_masks, | |
self.args.save_conf, | |
pbatch["ori_shape"], | |
self.save_dir / "labels" / f"{Path(batch['im_file'][si]).stem}.txt", | |
) | |
def finalize_metrics(self, *args, **kwargs): | |
"""Sets speed and confusion matrix for evaluation metrics.""" | |
self.metrics.speed = self.speed | |
self.metrics.confusion_matrix = self.confusion_matrix | |
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False): | |
""" | |
Compute correct prediction matrix for a batch based on bounding boxes and optional masks. | |
Args: | |
detections (torch.Tensor): Tensor of shape (N, 6) representing detected bounding boxes and | |
associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class]. | |
gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground truth bounding box coordinates. | |
Each row is of the format [x1, y1, x2, y2]. | |
gt_cls (torch.Tensor): Tensor of shape (M,) representing ground truth class indices. | |
pred_masks (torch.Tensor | None): Tensor representing predicted masks, if available. The shape should | |
match the ground truth masks. | |
gt_masks (torch.Tensor | None): Tensor of shape (M, H, W) representing ground truth masks, if available. | |
overlap (bool): Flag indicating if overlapping masks should be considered. | |
masks (bool): Flag indicating if the batch contains mask data. | |
Returns: | |
(torch.Tensor): A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels. | |
Note: | |
- If `masks` is True, the function computes IoU between predicted and ground truth masks. | |
- If `overlap` is True and `masks` is True, overlapping masks are taken into account when computing IoU. | |
Example: | |
```python | |
detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]]) | |
gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]]) | |
gt_cls = torch.tensor([1, 0]) | |
correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls) | |
``` | |
""" | |
if masks: | |
if overlap: | |
nl = len(gt_cls) | |
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 | |
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) | |
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) | |
if gt_masks.shape[1:] != pred_masks.shape[1:]: | |
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] | |
gt_masks = gt_masks.gt_(0.5) | |
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) | |
else: # boxes | |
iou = box_iou(gt_bboxes, detections[:, :4]) | |
return self.match_predictions(detections[:, 5], gt_cls, iou) | |
def plot_val_samples(self, batch, ni): | |
"""Plots validation samples with bounding box labels.""" | |
plot_images( | |
batch["img"], | |
batch["batch_idx"], | |
batch["cls"].squeeze(-1), | |
batch["bboxes"], | |
masks=batch["masks"], | |
paths=batch["im_file"], | |
fname=self.save_dir / f"val_batch{ni}_labels.jpg", | |
names=self.names, | |
on_plot=self.on_plot, | |
) | |
def plot_predictions(self, batch, preds, ni): | |
"""Plots batch predictions with masks and bounding boxes.""" | |
plot_images( | |
batch["img"], | |
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed | |
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, | |
paths=batch["im_file"], | |
fname=self.save_dir / f"val_batch{ni}_pred.jpg", | |
names=self.names, | |
on_plot=self.on_plot, | |
) # pred | |
self.plot_masks.clear() | |
def save_one_txt(self, predn, pred_masks, save_conf, shape, file): | |
"""Save YOLO detections to a txt file in normalized coordinates in a specific format.""" | |
from ultralytics.engine.results import Results | |
Results( | |
np.zeros((shape[0], shape[1]), dtype=np.uint8), | |
path=None, | |
names=self.names, | |
boxes=predn[:, :6], | |
masks=pred_masks, | |
).save_txt(file, save_conf=save_conf) | |
def pred_to_json(self, predn, filename, pred_masks): | |
""" | |
Save one JSON result. | |
Examples: | |
>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
""" | |
from pycocotools.mask import encode # noqa | |
def single_encode(x): | |
"""Encode predicted masks as RLE and append results to jdict.""" | |
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] | |
rle["counts"] = rle["counts"].decode("utf-8") | |
return rle | |
stem = Path(filename).stem | |
image_id = int(stem) if stem.isnumeric() else stem | |
box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
pred_masks = np.transpose(pred_masks, (2, 0, 1)) | |
with ThreadPool(NUM_THREADS) as pool: | |
rles = pool.map(single_encode, pred_masks) | |
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): | |
self.jdict.append( | |
{ | |
"image_id": image_id, | |
"category_id": self.class_map[int(p[5])], | |
"bbox": [round(x, 3) for x in b], | |
"score": round(p[4], 5), | |
"segmentation": rles[i], | |
} | |
) | |
def eval_json(self, stats): | |
"""Return COCO-style object detection evaluation metrics.""" | |
if self.args.save_json and self.is_coco and len(self.jdict): | |
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations | |
pred_json = self.save_dir / "predictions.json" # predictions | |
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...") | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
check_requirements("pycocotools>=2.0.6") | |
from pycocotools.coco import COCO # noqa | |
from pycocotools.cocoeval import COCOeval # noqa | |
for x in anno_json, pred_json: | |
assert x.is_file(), f"{x} file not found" | |
anno = COCO(str(anno_json)) # init annotations api | |
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]): | |
if self.is_coco: | |
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
idx = i * 4 + 2 | |
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[ | |
:2 | |
] # update mAP50-95 and mAP50 | |
except Exception as e: | |
LOGGER.warning(f"pycocotools unable to run: {e}") | |
return stats | |