Spaces:
Running
Running
| # Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
| from multiprocessing.pool import ThreadPool | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from ultralytics.models.yolo.detect import DetectionValidator | |
| from ultralytics.utils import LOGGER, NUM_THREADS, ops | |
| from ultralytics.utils.checks import check_requirements | |
| from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou | |
| from ultralytics.utils.plotting import output_to_target, plot_images | |
| class SegmentationValidator(DetectionValidator): | |
| """ | |
| A class extending the DetectionValidator class for validation based on a segmentation model. | |
| Example: | |
| ```python | |
| from ultralytics.models.yolo.segment import SegmentationValidator | |
| args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml") | |
| validator = SegmentationValidator(args=args) | |
| validator() | |
| ``` | |
| """ | |
| def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
| """Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" | |
| super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
| self.plot_masks = None | |
| self.process = None | |
| self.args.task = "segment" | |
| self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) | |
| def preprocess(self, batch): | |
| """Preprocesses batch by converting masks to float and sending to device.""" | |
| batch = super().preprocess(batch) | |
| batch["masks"] = batch["masks"].to(self.device).float() | |
| return batch | |
| def init_metrics(self, model): | |
| """Initialize metrics and select mask processing function based on save_json flag.""" | |
| super().init_metrics(model) | |
| self.plot_masks = [] | |
| if self.args.save_json: | |
| check_requirements("pycocotools>=2.0.6") | |
| # more accurate vs faster | |
| self.process = ops.process_mask_native if self.args.save_json or self.args.save_txt else ops.process_mask | |
| self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[]) | |
| def get_desc(self): | |
| """Return a formatted description of evaluation metrics.""" | |
| return ("%22s" + "%11s" * 10) % ( | |
| "Class", | |
| "Images", | |
| "Instances", | |
| "Box(P", | |
| "R", | |
| "mAP50", | |
| "mAP50-95)", | |
| "Mask(P", | |
| "R", | |
| "mAP50", | |
| "mAP50-95)", | |
| ) | |
| def postprocess(self, preds): | |
| """Post-processes YOLO predictions and returns output detections with proto.""" | |
| p = ops.non_max_suppression( | |
| preds[0], | |
| self.args.conf, | |
| self.args.iou, | |
| labels=self.lb, | |
| multi_label=True, | |
| agnostic=self.args.single_cls or self.args.agnostic_nms, | |
| max_det=self.args.max_det, | |
| nc=self.nc, | |
| ) | |
| proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported | |
| return p, proto | |
| def _prepare_batch(self, si, batch): | |
| """Prepares a batch for training or inference by processing images and targets.""" | |
| prepared_batch = super()._prepare_batch(si, batch) | |
| midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si | |
| prepared_batch["masks"] = batch["masks"][midx] | |
| return prepared_batch | |
| def _prepare_pred(self, pred, pbatch, proto): | |
| """Prepares a batch for training or inference by processing images and targets.""" | |
| predn = super()._prepare_pred(pred, pbatch) | |
| pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"]) | |
| return predn, pred_masks | |
| def update_metrics(self, preds, batch): | |
| """Metrics.""" | |
| for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): | |
| self.seen += 1 | |
| npr = len(pred) | |
| stat = dict( | |
| conf=torch.zeros(0, device=self.device), | |
| pred_cls=torch.zeros(0, device=self.device), | |
| tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), | |
| tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), | |
| ) | |
| pbatch = self._prepare_batch(si, batch) | |
| cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") | |
| nl = len(cls) | |
| stat["target_cls"] = cls | |
| stat["target_img"] = cls.unique() | |
| if npr == 0: | |
| if nl: | |
| for k in self.stats.keys(): | |
| self.stats[k].append(stat[k]) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) | |
| continue | |
| # Masks | |
| gt_masks = pbatch.pop("masks") | |
| # Predictions | |
| if self.args.single_cls: | |
| pred[:, 5] = 0 | |
| predn, pred_masks = self._prepare_pred(pred, pbatch, proto) | |
| stat["conf"] = predn[:, 4] | |
| stat["pred_cls"] = predn[:, 5] | |
| # Evaluate | |
| if nl: | |
| stat["tp"] = self._process_batch(predn, bbox, cls) | |
| stat["tp_m"] = self._process_batch( | |
| predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True | |
| ) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(predn, bbox, cls) | |
| for k in self.stats.keys(): | |
| self.stats[k].append(stat[k]) | |
| pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) | |
| if self.args.plots and self.batch_i < 3: | |
| self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot | |
| # Save | |
| if self.args.save_json: | |
| self.pred_to_json( | |
| predn, | |
| batch["im_file"][si], | |
| ops.scale_image( | |
| pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), | |
| pbatch["ori_shape"], | |
| ratio_pad=batch["ratio_pad"][si], | |
| ), | |
| ) | |
| if self.args.save_txt: | |
| self.save_one_txt( | |
| predn, | |
| pred_masks, | |
| self.args.save_conf, | |
| pbatch["ori_shape"], | |
| self.save_dir / "labels" / f"{Path(batch['im_file'][si]).stem}.txt", | |
| ) | |
| def finalize_metrics(self, *args, **kwargs): | |
| """Sets speed and confusion matrix for evaluation metrics.""" | |
| self.metrics.speed = self.speed | |
| self.metrics.confusion_matrix = self.confusion_matrix | |
| def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False): | |
| """ | |
| Compute correct prediction matrix for a batch based on bounding boxes and optional masks. | |
| Args: | |
| detections (torch.Tensor): Tensor of shape (N, 6) representing detected bounding boxes and | |
| associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class]. | |
| gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground truth bounding box coordinates. | |
| Each row is of the format [x1, y1, x2, y2]. | |
| gt_cls (torch.Tensor): Tensor of shape (M,) representing ground truth class indices. | |
| pred_masks (torch.Tensor | None): Tensor representing predicted masks, if available. The shape should | |
| match the ground truth masks. | |
| gt_masks (torch.Tensor | None): Tensor of shape (M, H, W) representing ground truth masks, if available. | |
| overlap (bool): Flag indicating if overlapping masks should be considered. | |
| masks (bool): Flag indicating if the batch contains mask data. | |
| Returns: | |
| (torch.Tensor): A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels. | |
| Note: | |
| - If `masks` is True, the function computes IoU between predicted and ground truth masks. | |
| - If `overlap` is True and `masks` is True, overlapping masks are taken into account when computing IoU. | |
| Example: | |
| ```python | |
| detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]]) | |
| gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]]) | |
| gt_cls = torch.tensor([1, 0]) | |
| correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls) | |
| ``` | |
| """ | |
| if masks: | |
| if overlap: | |
| nl = len(gt_cls) | |
| index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 | |
| gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) | |
| gt_masks = torch.where(gt_masks == index, 1.0, 0.0) | |
| if gt_masks.shape[1:] != pred_masks.shape[1:]: | |
| gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] | |
| gt_masks = gt_masks.gt_(0.5) | |
| iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) | |
| else: # boxes | |
| iou = box_iou(gt_bboxes, detections[:, :4]) | |
| return self.match_predictions(detections[:, 5], gt_cls, iou) | |
| def plot_val_samples(self, batch, ni): | |
| """Plots validation samples with bounding box labels.""" | |
| plot_images( | |
| batch["img"], | |
| batch["batch_idx"], | |
| batch["cls"].squeeze(-1), | |
| batch["bboxes"], | |
| masks=batch["masks"], | |
| paths=batch["im_file"], | |
| fname=self.save_dir / f"val_batch{ni}_labels.jpg", | |
| names=self.names, | |
| on_plot=self.on_plot, | |
| ) | |
| def plot_predictions(self, batch, preds, ni): | |
| """Plots batch predictions with masks and bounding boxes.""" | |
| plot_images( | |
| batch["img"], | |
| *output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed | |
| torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, | |
| paths=batch["im_file"], | |
| fname=self.save_dir / f"val_batch{ni}_pred.jpg", | |
| names=self.names, | |
| on_plot=self.on_plot, | |
| ) # pred | |
| self.plot_masks.clear() | |
| def save_one_txt(self, predn, pred_masks, save_conf, shape, file): | |
| """Save YOLO detections to a txt file in normalized coordinates in a specific format.""" | |
| from ultralytics.engine.results import Results | |
| Results( | |
| np.zeros((shape[0], shape[1]), dtype=np.uint8), | |
| path=None, | |
| names=self.names, | |
| boxes=predn[:, :6], | |
| masks=pred_masks, | |
| ).save_txt(file, save_conf=save_conf) | |
| def pred_to_json(self, predn, filename, pred_masks): | |
| """ | |
| Save one JSON result. | |
| Examples: | |
| >>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
| """ | |
| from pycocotools.mask import encode # noqa | |
| def single_encode(x): | |
| """Encode predicted masks as RLE and append results to jdict.""" | |
| rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] | |
| rle["counts"] = rle["counts"].decode("utf-8") | |
| return rle | |
| stem = Path(filename).stem | |
| image_id = int(stem) if stem.isnumeric() else stem | |
| box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
| box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
| pred_masks = np.transpose(pred_masks, (2, 0, 1)) | |
| with ThreadPool(NUM_THREADS) as pool: | |
| rles = pool.map(single_encode, pred_masks) | |
| for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): | |
| self.jdict.append( | |
| { | |
| "image_id": image_id, | |
| "category_id": self.class_map[int(p[5])], | |
| "bbox": [round(x, 3) for x in b], | |
| "score": round(p[4], 5), | |
| "segmentation": rles[i], | |
| } | |
| ) | |
| def eval_json(self, stats): | |
| """Return COCO-style object detection evaluation metrics.""" | |
| if self.args.save_json and self.is_coco and len(self.jdict): | |
| anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations | |
| pred_json = self.save_dir / "predictions.json" # predictions | |
| LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...") | |
| try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
| check_requirements("pycocotools>=2.0.6") | |
| from pycocotools.coco import COCO # noqa | |
| from pycocotools.cocoeval import COCOeval # noqa | |
| for x in anno_json, pred_json: | |
| assert x.is_file(), f"{x} file not found" | |
| anno = COCO(str(anno_json)) # init annotations api | |
| pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
| for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]): | |
| if self.is_coco: | |
| eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval | |
| eval.evaluate() | |
| eval.accumulate() | |
| eval.summarize() | |
| idx = i * 4 + 2 | |
| stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[ | |
| :2 | |
| ] # update mAP50-95 and mAP50 | |
| except Exception as e: | |
| LOGGER.warning(f"pycocotools unable to run: {e}") | |
| return stats | |