Spaces:
Running
Running
# Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
from typing import Tuple | |
import torch | |
import torch.nn.functional as F | |
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): | |
""" | |
Selects the closest conditioning frames to a given frame index. | |
Args: | |
frame_idx (int): Current frame index. | |
cond_frame_outputs (Dict[int, Any]): Dictionary of conditioning frame outputs keyed by frame indices. | |
max_cond_frame_num (int): Maximum number of conditioning frames to select. | |
Returns: | |
(Tuple[Dict[int, Any], Dict[int, Any]]): A tuple containing two dictionaries: | |
- selected_outputs: Selected items from cond_frame_outputs. | |
- unselected_outputs: Items not selected from cond_frame_outputs. | |
Examples: | |
>>> frame_idx = 5 | |
>>> cond_frame_outputs = {1: "a", 3: "b", 7: "c", 9: "d"} | |
>>> max_cond_frame_num = 2 | |
>>> selected, unselected = select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num) | |
>>> print(selected) | |
{3: 'b', 7: 'c'} | |
>>> print(unselected) | |
{1: 'a', 9: 'd'} | |
""" | |
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: | |
selected_outputs = cond_frame_outputs | |
unselected_outputs = {} | |
else: | |
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" | |
selected_outputs = {} | |
# the closest conditioning frame before `frame_idx` (if any) | |
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) | |
if idx_before is not None: | |
selected_outputs[idx_before] = cond_frame_outputs[idx_before] | |
# the closest conditioning frame after `frame_idx` (if any) | |
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) | |
if idx_after is not None: | |
selected_outputs[idx_after] = cond_frame_outputs[idx_after] | |
# add other temporally closest conditioning frames until reaching a total | |
# of `max_cond_frame_num` conditioning frames. | |
num_remain = max_cond_frame_num - len(selected_outputs) | |
inds_remain = sorted( | |
(t for t in cond_frame_outputs if t not in selected_outputs), | |
key=lambda x: abs(x - frame_idx), | |
)[:num_remain] | |
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) | |
unselected_outputs = {t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs} | |
return selected_outputs, unselected_outputs | |
def get_1d_sine_pe(pos_inds, dim, temperature=10000): | |
"""Generates 1D sinusoidal positional embeddings for given positions and dimensions.""" | |
pe_dim = dim // 2 | |
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) | |
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) | |
pos_embed = pos_inds.unsqueeze(-1) / dim_t | |
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) | |
return pos_embed | |
def init_t_xy(end_x: int, end_y: int): | |
"""Initializes 1D and 2D coordinate tensors for a grid of specified dimensions.""" | |
t = torch.arange(end_x * end_y, dtype=torch.float32) | |
t_x = (t % end_x).float() | |
t_y = torch.div(t, end_x, rounding_mode="floor").float() | |
return t_x, t_y | |
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): | |
"""Computes axial complex exponential positional encodings for 2D spatial positions in a grid.""" | |
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | |
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) | |
t_x, t_y = init_t_xy(end_x, end_y) | |
freqs_x = torch.outer(t_x, freqs_x) | |
freqs_y = torch.outer(t_y, freqs_y) | |
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) | |
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) | |
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
"""Reshapes frequency tensor for broadcasting with input tensor, ensuring dimensional compatibility.""" | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) | |
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_enc( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
repeat_freqs_k: bool = False, | |
): | |
"""Applies rotary positional encoding to query and key tensors using complex-valued frequency components.""" | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
if xk_ is None: | |
# no keys to rotate, due to dropout | |
return xq_out.type_as(xq).to(xq.device), xk | |
# repeat freqs along seq_len dim to match k seq_len | |
if repeat_freqs_k: | |
r = xk_.shape[-2] // xq_.shape[-2] | |
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) | |
def window_partition(x, window_size): | |
""" | |
Partitions input tensor into non-overlapping windows with padding if needed. | |
Args: | |
x (torch.Tensor): Input tensor with shape (B, H, W, C). | |
window_size (int): Size of each window. | |
Returns: | |
(Tuple[torch.Tensor, Tuple[int, int]]): A tuple containing: | |
- windows (torch.Tensor): Partitioned windows with shape (B * num_windows, window_size, window_size, C). | |
- (Hp, Wp) (Tuple[int, int]): Padded height and width before partition. | |
Examples: | |
>>> x = torch.randn(1, 16, 16, 3) | |
>>> windows, (Hp, Wp) = window_partition(x, window_size=4) | |
>>> print(windows.shape, Hp, Wp) | |
torch.Size([16, 4, 4, 3]) 16 16 | |
""" | |
B, H, W, C = x.shape | |
pad_h = (window_size - H % window_size) % window_size | |
pad_w = (window_size - W % window_size) % window_size | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
Hp, Wp = H + pad_h, W + pad_w | |
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows, (Hp, Wp) | |
def window_unpartition(windows, window_size, pad_hw, hw): | |
""" | |
Unpartitions windowed sequences into original sequences and removes padding. | |
This function reverses the windowing process, reconstructing the original input from windowed segments | |
and removing any padding that was added during the windowing process. | |
Args: | |
windows (torch.Tensor): Input tensor of windowed sequences with shape (B * num_windows, window_size, | |
window_size, C), where B is the batch size, num_windows is the number of windows, window_size is | |
the size of each window, and C is the number of channels. | |
window_size (int): Size of each window. | |
pad_hw (Tuple[int, int]): Padded height and width (Hp, Wp) of the input before windowing. | |
hw (Tuple[int, int]): Original height and width (H, W) of the input before padding and windowing. | |
Returns: | |
(torch.Tensor): Unpartitioned sequences with shape (B, H, W, C), where B is the batch size, H and W | |
are the original height and width, and C is the number of channels. | |
Examples: | |
>>> windows = torch.rand(32, 8, 8, 64) # 32 windows of size 8x8 with 64 channels | |
>>> pad_hw = (16, 16) # Padded height and width | |
>>> hw = (15, 14) # Original height and width | |
>>> x = window_unpartition(windows, window_size=8, pad_hw=pad_hw, hw=hw) | |
>>> print(x.shape) | |
torch.Size([1, 15, 14, 64]) | |
""" | |
Hp, Wp = pad_hw | |
H, W = hw | |
B = windows.shape[0] // (Hp * Wp // window_size // window_size) | |
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | |
if Hp > H or Wp > W: | |
x = x[:, :H, :W, :].contiguous() | |
return x | |
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: | |
""" | |
Extracts relative positional embeddings based on query and key sizes. | |
Args: | |
q_size (int): Size of the query. | |
k_size (int): Size of the key. | |
rel_pos (torch.Tensor): Relative position embeddings with shape (L, C), where L is the maximum relative | |
distance and C is the embedding dimension. | |
Returns: | |
(torch.Tensor): Extracted positional embeddings according to relative positions, with shape (q_size, | |
k_size, C). | |
Examples: | |
>>> q_size, k_size = 8, 16 | |
>>> rel_pos = torch.randn(31, 64) # 31 = 2 * max(8, 16) - 1 | |
>>> extracted_pos = get_rel_pos(q_size, k_size, rel_pos) | |
>>> print(extracted_pos.shape) | |
torch.Size([8, 16, 64]) | |
""" | |
max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
# Interpolate rel pos if needed. | |
if rel_pos.shape[0] != max_rel_dist: | |
# Interpolate rel pos. | |
rel_pos_resized = F.interpolate( | |
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
size=max_rel_dist, | |
mode="linear", | |
) | |
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
else: | |
rel_pos_resized = rel_pos | |
# Scale the coords with short length if shapes for q and k are different. | |
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
return rel_pos_resized[relative_coords.long()] | |
def add_decomposed_rel_pos( | |
attn: torch.Tensor, | |
q: torch.Tensor, | |
rel_pos_h: torch.Tensor, | |
rel_pos_w: torch.Tensor, | |
q_size: Tuple[int, int], | |
k_size: Tuple[int, int], | |
) -> torch.Tensor: | |
""" | |
Adds decomposed Relative Positional Embeddings to the attention map. | |
This function calculates and applies decomposed Relative Positional Embeddings as described in the MVITv2 | |
paper. It enhances the attention mechanism by incorporating spatial relationships between query and key | |
positions. | |
Args: | |
attn (torch.Tensor): Attention map with shape (B, q_h * q_w, k_h * k_w). | |
q (torch.Tensor): Query tensor in the attention layer with shape (B, q_h * q_w, C). | |
rel_pos_h (torch.Tensor): Relative position embeddings for height axis with shape (Lh, C). | |
rel_pos_w (torch.Tensor): Relative position embeddings for width axis with shape (Lw, C). | |
q_size (Tuple[int, int]): Spatial sequence size of query q as (q_h, q_w). | |
k_size (Tuple[int, int]): Spatial sequence size of key k as (k_h, k_w). | |
Returns: | |
(torch.Tensor): Updated attention map with added relative positional embeddings, shape | |
(B, q_h * q_w, k_h * k_w). | |
Examples: | |
>>> B, C, q_h, q_w, k_h, k_w = 1, 64, 8, 8, 8, 8 | |
>>> attn = torch.rand(B, q_h * q_w, k_h * k_w) | |
>>> q = torch.rand(B, q_h * q_w, C) | |
>>> rel_pos_h = torch.rand(2 * max(q_h, k_h) - 1, C) | |
>>> rel_pos_w = torch.rand(2 * max(q_w, k_w) - 1, C) | |
>>> q_size, k_size = (q_h, q_w), (k_h, k_w) | |
>>> updated_attn = add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size) | |
>>> print(updated_attn.shape) | |
torch.Size([1, 64, 64]) | |
References: | |
https://github.com/facebookresearch/mvit/blob/main/mvit/models/attention.py | |
""" | |
q_h, q_w = q_size | |
k_h, k_w = k_size | |
Rh = get_rel_pos(q_h, k_h, rel_pos_h) | |
Rw = get_rel_pos(q_w, k_w, rel_pos_w) | |
B, _, dim = q.shape | |
r_q = q.reshape(B, q_h, q_w, dim) | |
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) | |
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) | |
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( | |
B, q_h * q_w, k_h * k_w | |
) | |
return attn | |