File size: 7,106 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Ultralytics πŸš€ AGPL-3.0 License - https://ultralytics.com/license

import numpy as np
import scipy
from scipy.spatial.distance import cdist

from ultralytics.utils.metrics import batch_probiou, bbox_ioa

try:
    import lap  # for linear_assignment

    assert lap.__version__  # verify package is not directory
except (ImportError, AssertionError, AttributeError):
    from ultralytics.utils.checks import check_requirements

    check_requirements("lap>=0.5.12")  # https://github.com/gatagat/lap
    import lap


def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
    """
    Perform linear assignment using either the scipy or lap.lapjv method.

    Args:
        cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
        thresh (float): Threshold for considering an assignment valid.
        use_lap (bool): Use lap.lapjv for the assignment. If False, scipy.optimize.linear_sum_assignment is used.

    Returns:
        matched_indices (np.ndarray): Array of matched indices of shape (K, 2), where K is the number of matches.
        unmatched_a (np.ndarray): Array of unmatched indices from the first set, with shape (L,).
        unmatched_b (np.ndarray): Array of unmatched indices from the second set, with shape (M,).

    Examples:
        >>> cost_matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        >>> thresh = 5.0
        >>> matched_indices, unmatched_a, unmatched_b = linear_assignment(cost_matrix, thresh, use_lap=True)
    """
    if cost_matrix.size == 0:
        return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))

    if use_lap:
        # Use lap.lapjv
        # https://github.com/gatagat/lap
        _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
        matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
        unmatched_a = np.where(x < 0)[0]
        unmatched_b = np.where(y < 0)[0]
    else:
        # Use scipy.optimize.linear_sum_assignment
        # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
        x, y = scipy.optimize.linear_sum_assignment(cost_matrix)  # row x, col y
        matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
        if len(matches) == 0:
            unmatched_a = list(np.arange(cost_matrix.shape[0]))
            unmatched_b = list(np.arange(cost_matrix.shape[1]))
        else:
            unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0]))
            unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1]))

    return matches, unmatched_a, unmatched_b


def iou_distance(atracks: list, btracks: list) -> np.ndarray:
    """
    Compute cost based on Intersection over Union (IoU) between tracks.

    Args:
        atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
        btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.

    Returns:
        (np.ndarray): Cost matrix computed based on IoU.

    Examples:
        Compute IoU distance between two sets of tracks
        >>> atracks = [np.array([0, 0, 10, 10]), np.array([20, 20, 30, 30])]
        >>> btracks = [np.array([5, 5, 15, 15]), np.array([25, 25, 35, 35])]
        >>> cost_matrix = iou_distance(atracks, btracks)
    """
    if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
        atlbrs = atracks
        btlbrs = btracks
    else:
        atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks]
        btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks]

    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
    if len(atlbrs) and len(btlbrs):
        if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5:
            ious = batch_probiou(
                np.ascontiguousarray(atlbrs, dtype=np.float32),
                np.ascontiguousarray(btlbrs, dtype=np.float32),
            ).numpy()
        else:
            ious = bbox_ioa(
                np.ascontiguousarray(atlbrs, dtype=np.float32),
                np.ascontiguousarray(btlbrs, dtype=np.float32),
                iou=True,
            )
    return 1 - ious  # cost matrix


def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray:
    """
    Compute distance between tracks and detections based on embeddings.

    Args:
        tracks (list[STrack]): List of tracks, where each track contains embedding features.
        detections (list[BaseTrack]): List of detections, where each detection contains embedding features.
        metric (str): Metric for distance computation. Supported metrics include 'cosine', 'euclidean', etc.

    Returns:
        (np.ndarray): Cost matrix computed based on embeddings with shape (N, M), where N is the number of tracks
            and M is the number of detections.

    Examples:
        Compute the embedding distance between tracks and detections using cosine metric
        >>> tracks = [STrack(...), STrack(...)]  # List of track objects with embedding features
        >>> detections = [BaseTrack(...), BaseTrack(...)]  # List of detection objects with embedding features
        >>> cost_matrix = embedding_distance(tracks, detections, metric="cosine")
    """
    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
    # for i, track in enumerate(tracks):
    # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))  # Normalized features
    return cost_matrix


def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
    """
    Fuses cost matrix with detection scores to produce a single similarity matrix.

    Args:
        cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
        detections (list[BaseTrack]): List of detections, each containing a score attribute.

    Returns:
        (np.ndarray): Fused similarity matrix with shape (N, M).

    Examples:
        Fuse a cost matrix with detection scores
        >>> cost_matrix = np.random.rand(5, 10)  # 5 tracks and 10 detections
        >>> detections = [BaseTrack(score=np.random.rand()) for _ in range(10)]
        >>> fused_matrix = fuse_score(cost_matrix, detections)
    """
    if cost_matrix.size == 0:
        return cost_matrix
    iou_sim = 1 - cost_matrix
    det_scores = np.array([det.score for det in detections])
    det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
    fuse_sim = iou_sim * det_scores
    return 1 - fuse_sim  # fuse_cost