Spaces:
Running
Running
File size: 7,106 Bytes
1999a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Ultralytics π AGPL-3.0 License - https://ultralytics.com/license
import numpy as np
import scipy
from scipy.spatial.distance import cdist
from ultralytics.utils.metrics import batch_probiou, bbox_ioa
try:
import lap # for linear_assignment
assert lap.__version__ # verify package is not directory
except (ImportError, AssertionError, AttributeError):
from ultralytics.utils.checks import check_requirements
check_requirements("lap>=0.5.12") # https://github.com/gatagat/lap
import lap
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
"""
Perform linear assignment using either the scipy or lap.lapjv method.
Args:
cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
thresh (float): Threshold for considering an assignment valid.
use_lap (bool): Use lap.lapjv for the assignment. If False, scipy.optimize.linear_sum_assignment is used.
Returns:
matched_indices (np.ndarray): Array of matched indices of shape (K, 2), where K is the number of matches.
unmatched_a (np.ndarray): Array of unmatched indices from the first set, with shape (L,).
unmatched_b (np.ndarray): Array of unmatched indices from the second set, with shape (M,).
Examples:
>>> cost_matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> thresh = 5.0
>>> matched_indices, unmatched_a, unmatched_b = linear_assignment(cost_matrix, thresh, use_lap=True)
"""
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
if use_lap:
# Use lap.lapjv
# https://github.com/gatagat/lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]
else:
# Use scipy.optimize.linear_sum_assignment
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
if len(matches) == 0:
unmatched_a = list(np.arange(cost_matrix.shape[0]))
unmatched_b = list(np.arange(cost_matrix.shape[1]))
else:
unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0]))
unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1]))
return matches, unmatched_a, unmatched_b
def iou_distance(atracks: list, btracks: list) -> np.ndarray:
"""
Compute cost based on Intersection over Union (IoU) between tracks.
Args:
atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
Returns:
(np.ndarray): Cost matrix computed based on IoU.
Examples:
Compute IoU distance between two sets of tracks
>>> atracks = [np.array([0, 0, 10, 10]), np.array([20, 20, 30, 30])]
>>> btracks = [np.array([5, 5, 15, 15]), np.array([25, 25, 35, 35])]
>>> cost_matrix = iou_distance(atracks, btracks)
"""
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks]
btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks]
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
if len(atlbrs) and len(btlbrs):
if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5:
ious = batch_probiou(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
).numpy()
else:
ious = bbox_ioa(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
iou=True,
)
return 1 - ious # cost matrix
def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray:
"""
Compute distance between tracks and detections based on embeddings.
Args:
tracks (list[STrack]): List of tracks, where each track contains embedding features.
detections (list[BaseTrack]): List of detections, where each detection contains embedding features.
metric (str): Metric for distance computation. Supported metrics include 'cosine', 'euclidean', etc.
Returns:
(np.ndarray): Cost matrix computed based on embeddings with shape (N, M), where N is the number of tracks
and M is the number of detections.
Examples:
Compute the embedding distance between tracks and detections using cosine metric
>>> tracks = [STrack(...), STrack(...)] # List of track objects with embedding features
>>> detections = [BaseTrack(...), BaseTrack(...)] # List of detection objects with embedding features
>>> cost_matrix = embedding_distance(tracks, detections, metric="cosine")
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
# for i, track in enumerate(tracks):
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features
return cost_matrix
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
"""
Fuses cost matrix with detection scores to produce a single similarity matrix.
Args:
cost_matrix (np.ndarray): The matrix containing cost values for assignments, with shape (N, M).
detections (list[BaseTrack]): List of detections, each containing a score attribute.
Returns:
(np.ndarray): Fused similarity matrix with shape (N, M).
Examples:
Fuse a cost matrix with detection scores
>>> cost_matrix = np.random.rand(5, 10) # 5 tracks and 10 detections
>>> detections = [BaseTrack(score=np.random.rand()) for _ in range(10)]
>>> fused_matrix = fuse_score(cost_matrix, detections)
"""
if cost_matrix.size == 0:
return cost_matrix
iou_sim = 1 - cost_matrix
det_scores = np.array([det.score for det in detections])
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
fuse_sim = iou_sim * det_scores
return 1 - fuse_sim # fuse_cost
|