Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 5,562 Bytes
			
			| 1999a98 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | # Ultralytics π AGPL-3.0 License - https://ultralytics.com/license
import math
import cv2
from ultralytics.solutions.solutions import BaseSolution
from ultralytics.utils.plotting import Annotator, colors
class DistanceCalculation(BaseSolution):
    """
    A class to calculate distance between two objects in a real-time video stream based on their tracks.
    This class extends BaseSolution to provide functionality for selecting objects and calculating the distance
    between them in a video stream using YOLO object detection and tracking.
    Attributes:
        left_mouse_count (int): Counter for left mouse button clicks.
        selected_boxes (Dict[int, List[float]]): Dictionary to store selected bounding boxes and their track IDs.
        annotator (Annotator): An instance of the Annotator class for drawing on the image.
        boxes (List[List[float]]): List of bounding boxes for detected objects.
        track_ids (List[int]): List of track IDs for detected objects.
        clss (List[int]): List of class indices for detected objects.
        names (List[str]): List of class names that the model can detect.
        centroids (List[List[int]]): List to store centroids of selected bounding boxes.
    Methods:
        mouse_event_for_distance: Handles mouse events for selecting objects in the video stream.
        calculate: Processes video frames and calculates the distance between selected objects.
    Examples:
        >>> distance_calc = DistanceCalculation()
        >>> frame = cv2.imread("frame.jpg")
        >>> processed_frame = distance_calc.calculate(frame)
        >>> cv2.imshow("Distance Calculation", processed_frame)
        >>> cv2.waitKey(0)
    """
    def __init__(self, **kwargs):
        """Initializes the DistanceCalculation class for measuring object distances in video streams."""
        super().__init__(**kwargs)
        # Mouse event information
        self.left_mouse_count = 0
        self.selected_boxes = {}
        self.centroids = []  # Initialize empty list to store centroids
    def mouse_event_for_distance(self, event, x, y, flags, param):
        """
        Handles mouse events to select regions in a real-time video stream for distance calculation.
        Args:
            event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN).
            x (int): X-coordinate of the mouse pointer.
            y (int): Y-coordinate of the mouse pointer.
            flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY).
            param (Dict): Additional parameters passed to the function.
        Examples:
            >>> # Assuming 'dc' is an instance of DistanceCalculation
            >>> cv2.setMouseCallback("window_name", dc.mouse_event_for_distance)
        """
        if event == cv2.EVENT_LBUTTONDOWN:
            self.left_mouse_count += 1
            if self.left_mouse_count <= 2:
                for box, track_id in zip(self.boxes, self.track_ids):
                    if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
                        self.selected_boxes[track_id] = box
        elif event == cv2.EVENT_RBUTTONDOWN:
            self.selected_boxes = {}
            self.left_mouse_count = 0
    def calculate(self, im0):
        """
        Processes a video frame and calculates the distance between two selected bounding boxes.
        This method extracts tracks from the input frame, annotates bounding boxes, and calculates the distance
        between two user-selected objects if they have been chosen.
        Args:
            im0 (numpy.ndarray): The input image frame to process.
        Returns:
            (numpy.ndarray): The processed image frame with annotations and distance calculations.
        Examples:
            >>> import numpy as np
            >>> from ultralytics.solutions import DistanceCalculation
            >>> dc = DistanceCalculation()
            >>> frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
            >>> processed_frame = dc.calculate(frame)
        """
        self.annotator = Annotator(im0, line_width=self.line_width)  # Initialize annotator
        self.extract_tracks(im0)  # Extract tracks
        # Iterate over bounding boxes, track ids and classes index
        for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
            self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
            if len(self.selected_boxes) == 2:
                for trk_id in self.selected_boxes.keys():
                    if trk_id == track_id:
                        self.selected_boxes[track_id] = box
        if len(self.selected_boxes) == 2:
            # Store user selected boxes in centroids list
            self.centroids.extend(
                [[int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)] for box in self.selected_boxes.values()]
            )
            # Calculate pixels distance
            pixels_distance = math.sqrt(
                (self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2
            )
            self.annotator.plot_distance_and_line(pixels_distance, self.centroids)
        self.centroids = []
        self.display_output(im0)  # display output with base class function
        cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance)
        return im0  # return output image for more usage
 |