Spaces:
Running
Running
File size: 82,463 Bytes
1999a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Generate predictions using the Segment Anything Model (SAM).
SAM is an advanced image segmentation model offering features like promptable segmentation and zero-shot performance.
This module contains the implementation of the prediction logic and auxiliary utilities required to perform segmentation
using SAM. It forms an integral part of the Ultralytics framework and is designed for high-performance, real-time image
segmentation tasks.
"""
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.data.augment import LetterBox
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, ops
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
from .amg import (
batch_iterator,
batched_mask_to_box,
build_all_layer_point_grids,
calculate_stability_score,
generate_crop_boxes,
is_box_near_crop_edge,
remove_small_regions,
uncrop_boxes_xyxy,
uncrop_masks,
)
from .build import build_sam
class Predictor(BasePredictor):
"""
Predictor class for SAM, enabling real-time image segmentation with promptable capabilities.
This class extends BasePredictor and implements the Segment Anything Model (SAM) for advanced image
segmentation tasks. It supports various input prompts like points, bounding boxes, and masks for
fine-grained control over segmentation results.
Attributes:
args (SimpleNamespace): Configuration arguments for the predictor.
model (torch.nn.Module): The loaded SAM model.
device (torch.device): The device (CPU or GPU) on which the model is loaded.
im (torch.Tensor): The preprocessed input image.
features (torch.Tensor): Extracted image features.
prompts (Dict): Dictionary to store various types of prompts (e.g., bboxes, points, masks).
segment_all (bool): Flag to indicate if full image segmentation should be performed.
mean (torch.Tensor): Mean values for image normalization.
std (torch.Tensor): Standard deviation values for image normalization.
Methods:
preprocess: Prepares input images for model inference.
pre_transform: Performs initial transformations on the input image.
inference: Performs segmentation inference based on input prompts.
prompt_inference: Internal function for prompt-based segmentation inference.
generate: Generates segmentation masks for an entire image.
setup_model: Initializes the SAM model for inference.
get_model: Builds and returns a SAM model.
postprocess: Post-processes model outputs to generate final results.
setup_source: Sets up the data source for inference.
set_image: Sets and preprocesses a single image for inference.
get_im_features: Extracts image features using the SAM image encoder.
set_prompts: Sets prompts for subsequent inference.
reset_image: Resets the current image and its features.
remove_small_regions: Removes small disconnected regions and holes from masks.
Examples:
>>> predictor = Predictor()
>>> predictor.setup_model(model_path="sam_model.pt")
>>> predictor.set_image("image.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> results = predictor(bboxes=bboxes)
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initialize the Predictor with configuration, overrides, and callbacks.
Sets up the Predictor object for SAM (Segment Anything Model) and applies any configuration overrides or
callbacks provided. Initializes task-specific settings for SAM, such as retina_masks being set to True
for optimal results.
Args:
cfg (Dict): Configuration dictionary containing default settings.
overrides (Dict | None): Dictionary of values to override default configuration.
_callbacks (Dict | None): Dictionary of callback functions to customize behavior.
Examples:
>>> predictor_example = Predictor(cfg=DEFAULT_CFG)
>>> predictor_example_with_imgsz = Predictor(overrides={"imgsz": 640})
>>> predictor_example_with_callback = Predictor(_callbacks={"on_predict_start": custom_callback})
"""
if overrides is None:
overrides = {}
overrides.update(dict(task="segment", mode="predict", batch=1))
super().__init__(cfg, overrides, _callbacks)
self.args.retina_masks = True
self.im = None
self.features = None
self.prompts = {}
self.segment_all = False
def preprocess(self, im):
"""
Preprocess the input image for model inference.
This method prepares the input image by applying transformations and normalization. It supports both
torch.Tensor and list of np.ndarray as input formats.
Args:
im (torch.Tensor | List[np.ndarray]): Input image(s) in BCHW tensor format or list of HWC numpy arrays.
Returns:
im (torch.Tensor): The preprocessed image tensor, normalized and converted to the appropriate dtype.
Examples:
>>> predictor = Predictor()
>>> image = torch.rand(1, 3, 640, 640)
>>> preprocessed_image = predictor.preprocess(image)
"""
if self.im is not None:
return self.im
not_tensor = not isinstance(im, torch.Tensor)
if not_tensor:
im = np.stack(self.pre_transform(im))
im = im[..., ::-1].transpose((0, 3, 1, 2))
im = np.ascontiguousarray(im)
im = torch.from_numpy(im)
im = im.to(self.device)
im = im.half() if self.model.fp16 else im.float()
if not_tensor:
im = (im - self.mean) / self.std
return im
def pre_transform(self, im):
"""
Perform initial transformations on the input image for preprocessing.
This method applies transformations such as resizing to prepare the image for further preprocessing.
Currently, batched inference is not supported; hence the list length should be 1.
Args:
im (List[np.ndarray]): List containing a single image in HWC numpy array format.
Returns:
(List[np.ndarray]): List containing the transformed image.
Raises:
AssertionError: If the input list contains more than one image.
Examples:
>>> predictor = Predictor()
>>> image = np.random.rand(480, 640, 3) # Single HWC image
>>> transformed = predictor.pre_transform([image])
>>> print(len(transformed))
1
"""
assert len(im) == 1, "SAM model does not currently support batched inference"
letterbox = LetterBox(self.args.imgsz, auto=False, center=False)
return [letterbox(image=x) for x in im]
def inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False, *args, **kwargs):
"""
Perform image segmentation inference based on the given input cues, using the currently loaded image.
This method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt
encoder, and mask decoder for real-time and promptable segmentation tasks.
Args:
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
bboxes (np.ndarray | List | None): Bounding boxes with shape (N, 4), in XYXY format.
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2), in pixels.
labels (np.ndarray | List | None): Labels for point prompts, shape (N,). 1 = foreground, 0 = background.
masks (np.ndarray | None): Low-resolution masks from previous predictions, shape (N, H, W). For SAM H=W=256.
multimask_output (bool): Flag to return multiple masks. Helpful for ambiguous prompts.
*args (Any): Additional positional arguments.
**kwargs (Any): Additional keyword arguments.
Returns:
(np.ndarray): The output masks in shape (C, H, W), where C is the number of generated masks.
(np.ndarray): An array of length C containing quality scores predicted by the model for each mask.
(np.ndarray): Low-resolution logits of shape (C, H, W) for subsequent inference, where H=W=256.
Examples:
>>> predictor = Predictor()
>>> predictor.setup_model(model_path="sam_model.pt")
>>> predictor.set_image("image.jpg")
>>> results = predictor(bboxes=[[0, 0, 100, 100]])
"""
# Override prompts if any stored in self.prompts
bboxes = self.prompts.pop("bboxes", bboxes)
points = self.prompts.pop("points", points)
masks = self.prompts.pop("masks", masks)
labels = self.prompts.pop("labels", labels)
if all(i is None for i in [bboxes, points, masks]):
return self.generate(im, *args, **kwargs)
return self.prompt_inference(im, bboxes, points, labels, masks, multimask_output)
def prompt_inference(self, im, bboxes=None, points=None, labels=None, masks=None, multimask_output=False):
"""
Performs image segmentation inference based on input cues using SAM's specialized architecture.
This internal function leverages the Segment Anything Model (SAM) for prompt-based, real-time segmentation.
It processes various input prompts such as bounding boxes, points, and masks to generate segmentation masks.
Args:
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
labels (np.ndarray | List | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.
masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.
multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
Raises:
AssertionError: If the number of points don't match the number of labels, in case labels were passed.
Returns:
(np.ndarray): Output masks with shape (C, H, W), where C is the number of generated masks.
(np.ndarray): Quality scores predicted by the model for each mask, with length C.
Examples:
>>> predictor = Predictor()
>>> im = torch.rand(1, 3, 1024, 1024)
>>> bboxes = [[100, 100, 200, 200]]
>>> masks, scores, logits = predictor.prompt_inference(im, bboxes=bboxes)
"""
features = self.get_im_features(im) if self.features is None else self.features
bboxes, points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
points = (points, labels) if points is not None else None
# Embed prompts
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)
# Predict masks
pred_masks, pred_scores = self.model.mask_decoder(
image_embeddings=features,
image_pe=self.model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
# (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
# `d` could be 1 or 3 depends on `multimask_output`.
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None):
"""
Prepares and transforms the input prompts for processing based on the destination shape.
Args:
dst_shape (tuple): The target shape (height, width) for the prompts.
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
labels (np.ndarray | List | None): Point prompt labels with shape (N) or (N, num_points). 1 for foreground, 0 for background.
masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array.
Raises:
AssertionError: If the number of points don't match the number of labels, in case labels were passed.
Returns:
(tuple): A tuple containing transformed bounding boxes, points, labels, and masks.
"""
src_shape = self.batch[1][0].shape[:2]
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
# Transform input prompts
if points is not None:
points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
points = points[None] if points.ndim == 1 else points
# Assuming labels are all positive if users don't pass labels.
if labels is None:
labels = np.ones(points.shape[:-1])
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
assert points.shape[-2] == labels.shape[-1], (
f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}."
)
points *= r
if points.ndim == 2:
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
points, labels = points[:, None, :], labels[:, None]
if bboxes is not None:
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
bboxes *= r
if masks is not None:
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
return bboxes, points, labels, masks
def generate(
self,
im,
crop_n_layers=0,
crop_overlap_ratio=512 / 1500,
crop_downscale_factor=1,
point_grids=None,
points_stride=32,
points_batch_size=64,
conf_thres=0.88,
stability_score_thresh=0.95,
stability_score_offset=0.95,
crop_nms_thresh=0.7,
):
"""
Perform image segmentation using the Segment Anything Model (SAM).
This method segments an entire image into constituent parts by leveraging SAM's advanced architecture
and real-time performance capabilities. It can optionally work on image crops for finer segmentation.
Args:
im (torch.Tensor): Input tensor representing the preprocessed image with shape (N, C, H, W).
crop_n_layers (int): Number of layers for additional mask predictions on image crops.
crop_overlap_ratio (float): Overlap between crops, scaled down in subsequent layers.
crop_downscale_factor (int): Scaling factor for sampled points-per-side in each layer.
point_grids (List[np.ndarray] | None): Custom grids for point sampling normalized to [0,1].
points_stride (int): Number of points to sample along each side of the image.
points_batch_size (int): Batch size for the number of points processed simultaneously.
conf_thres (float): Confidence threshold [0,1] for filtering based on mask quality prediction.
stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on stability.
stability_score_offset (float): Offset value for calculating stability score.
crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.
Returns:
pred_masks (torch.Tensor): Segmented masks with shape (N, H, W).
pred_scores (torch.Tensor): Confidence scores for each mask with shape (N,).
pred_bboxes (torch.Tensor): Bounding boxes for each mask with shape (N, 4).
Examples:
>>> predictor = Predictor()
>>> im = torch.rand(1, 3, 1024, 1024) # Example input image
>>> masks, scores, boxes = predictor.generate(im)
"""
import torchvision # scope for faster 'import ultralytics'
self.segment_all = True
ih, iw = im.shape[2:]
crop_regions, layer_idxs = generate_crop_boxes((ih, iw), crop_n_layers, crop_overlap_ratio)
if point_grids is None:
point_grids = build_all_layer_point_grids(points_stride, crop_n_layers, crop_downscale_factor)
pred_masks, pred_scores, pred_bboxes, region_areas = [], [], [], []
for crop_region, layer_idx in zip(crop_regions, layer_idxs):
x1, y1, x2, y2 = crop_region
w, h = x2 - x1, y2 - y1
area = torch.tensor(w * h, device=im.device)
points_scale = np.array([[w, h]]) # w, h
# Crop image and interpolate to input size
crop_im = F.interpolate(im[..., y1:y2, x1:x2], (ih, iw), mode="bilinear", align_corners=False)
# (num_points, 2)
points_for_image = point_grids[layer_idx] * points_scale
crop_masks, crop_scores, crop_bboxes = [], [], []
for (points,) in batch_iterator(points_batch_size, points_for_image):
pred_mask, pred_score = self.prompt_inference(crop_im, points=points, multimask_output=True)
# Interpolate predicted masks to input size
pred_mask = F.interpolate(pred_mask[None], (h, w), mode="bilinear", align_corners=False)[0]
idx = pred_score > conf_thres
pred_mask, pred_score = pred_mask[idx], pred_score[idx]
stability_score = calculate_stability_score(
pred_mask, self.model.mask_threshold, stability_score_offset
)
idx = stability_score > stability_score_thresh
pred_mask, pred_score = pred_mask[idx], pred_score[idx]
# Bool type is much more memory-efficient.
pred_mask = pred_mask > self.model.mask_threshold
# (N, 4)
pred_bbox = batched_mask_to_box(pred_mask).float()
keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih])
if not torch.all(keep_mask):
pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask]
crop_masks.append(pred_mask)
crop_bboxes.append(pred_bbox)
crop_scores.append(pred_score)
# Do nms within this crop
crop_masks = torch.cat(crop_masks)
crop_bboxes = torch.cat(crop_bboxes)
crop_scores = torch.cat(crop_scores)
keep = torchvision.ops.nms(crop_bboxes, crop_scores, self.args.iou) # NMS
crop_bboxes = uncrop_boxes_xyxy(crop_bboxes[keep], crop_region)
crop_masks = uncrop_masks(crop_masks[keep], crop_region, ih, iw)
crop_scores = crop_scores[keep]
pred_masks.append(crop_masks)
pred_bboxes.append(crop_bboxes)
pred_scores.append(crop_scores)
region_areas.append(area.expand(len(crop_masks)))
pred_masks = torch.cat(pred_masks)
pred_bboxes = torch.cat(pred_bboxes)
pred_scores = torch.cat(pred_scores)
region_areas = torch.cat(region_areas)
# Remove duplicate masks between crops
if len(crop_regions) > 1:
scores = 1 / region_areas
keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh)
pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep]
return pred_masks, pred_scores, pred_bboxes
def setup_model(self, model=None, verbose=True):
"""
Initializes the Segment Anything Model (SAM) for inference.
This method sets up the SAM model by allocating it to the appropriate device and initializing the necessary
parameters for image normalization and other Ultralytics compatibility settings.
Args:
model (torch.nn.Module | None): A pretrained SAM model. If None, a new model is built based on config.
verbose (bool): If True, prints selected device information.
Examples:
>>> predictor = Predictor()
>>> predictor.setup_model(model=sam_model, verbose=True)
"""
device = select_device(self.args.device, verbose=verbose)
if model is None:
model = self.get_model()
model.eval()
self.model = model.to(device)
self.device = device
self.mean = torch.tensor([123.675, 116.28, 103.53]).view(-1, 1, 1).to(device)
self.std = torch.tensor([58.395, 57.12, 57.375]).view(-1, 1, 1).to(device)
# Ultralytics compatibility settings
self.model.pt = False
self.model.triton = False
self.model.stride = 32
self.model.fp16 = False
self.done_warmup = True
def get_model(self):
"""Retrieves or builds the Segment Anything Model (SAM) for image segmentation tasks."""
return build_sam(self.args.model)
def postprocess(self, preds, img, orig_imgs):
"""
Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
This method scales masks and boxes to the original image size and applies a threshold to the mask
predictions. It leverages SAM's advanced architecture for real-time, promptable segmentation tasks.
Args:
preds (Tuple[torch.Tensor]): The output from SAM model inference, containing:
- pred_masks (torch.Tensor): Predicted masks with shape (N, 1, H, W).
- pred_scores (torch.Tensor): Confidence scores for each mask with shape (N, 1).
- pred_bboxes (torch.Tensor, optional): Predicted bounding boxes if segment_all is True.
img (torch.Tensor): The processed input image tensor with shape (C, H, W).
orig_imgs (List[np.ndarray] | torch.Tensor): The original, unprocessed images.
Returns:
results (List[Results]): List of Results objects containing detection masks, bounding boxes, and other
metadata for each processed image.
Examples:
>>> predictor = Predictor()
>>> preds = predictor.inference(img)
>>> results = predictor.postprocess(preds, img, orig_imgs)
"""
# (N, 1, H, W), (N, 1)
pred_masks, pred_scores = preds[:2]
pred_bboxes = preds[2] if self.segment_all else None
names = dict(enumerate(str(i) for i in range(len(pred_masks))))
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
if len(masks) == 0:
masks, pred_bboxes = None, torch.zeros((0, 6), device=pred_masks.device)
else:
masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
masks = masks > self.model.mask_threshold # to bool
if pred_bboxes is not None:
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
else:
pred_bboxes = batched_mask_to_box(masks)
# NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
# Reset segment-all mode.
self.segment_all = False
return results
def setup_source(self, source):
"""
Sets up the data source for inference.
This method configures the data source from which images will be fetched for inference. It supports
various input types such as image files, directories, video files, and other compatible data sources.
Args:
source (str | Path | None): The path or identifier for the image data source. Can be a file path,
directory path, URL, or other supported source types.
Examples:
>>> predictor = Predictor()
>>> predictor.setup_source("path/to/images")
>>> predictor.setup_source("video.mp4")
>>> predictor.setup_source(None) # Uses default source if available
Notes:
- If source is None, the method may use a default source if configured.
- The method adapts to different source types and prepares them for subsequent inference steps.
- Supported source types may include local files, directories, URLs, and video streams.
"""
if source is not None:
super().setup_source(source)
def set_image(self, image):
"""
Preprocesses and sets a single image for inference.
This method prepares the model for inference on a single image by setting up the model if not already
initialized, configuring the data source, and preprocessing the image for feature extraction. It
ensures that only one image is set at a time and extracts image features for subsequent use.
Args:
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing
an image read by cv2.
Raises:
AssertionError: If more than one image is attempted to be set.
Examples:
>>> predictor = Predictor()
>>> predictor.set_image("path/to/image.jpg")
>>> predictor.set_image(cv2.imread("path/to/image.jpg"))
Notes:
- This method should be called before performing inference on a new image.
- The extracted features are stored in the `self.features` attribute for later use.
"""
if self.model is None:
self.setup_model(model=None)
self.setup_source(image)
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
for batch in self.dataset:
im = self.preprocess(batch[1])
self.features = self.get_im_features(im)
break
def get_im_features(self, im):
"""Extracts image features using the SAM model's image encoder for subsequent mask prediction."""
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
f"SAM models only support square image size, but got {self.imgsz}."
)
self.model.set_imgsz(self.imgsz)
return self.model.image_encoder(im)
def set_prompts(self, prompts):
"""Sets prompts for subsequent inference operations."""
self.prompts = prompts
def reset_image(self):
"""Resets the current image and its features, clearing them for subsequent inference."""
self.im = None
self.features = None
@staticmethod
def remove_small_regions(masks, min_area=0, nms_thresh=0.7):
"""
Remove small disconnected regions and holes from segmentation masks.
This function performs post-processing on segmentation masks generated by the Segment Anything Model (SAM).
It removes small disconnected regions and holes from the input masks, and then performs Non-Maximum
Suppression (NMS) to eliminate any newly created duplicate boxes.
Args:
masks (torch.Tensor): Segmentation masks to be processed, with shape (N, H, W) where N is the number of
masks, H is height, and W is width.
min_area (int): Minimum area threshold for removing disconnected regions and holes. Regions smaller than
this will be removed.
nms_thresh (float): IoU threshold for the NMS algorithm to remove duplicate boxes.
Returns:
new_masks (torch.Tensor): Processed masks with small regions removed, shape (N, H, W).
keep (List[int]): Indices of remaining masks after NMS, for filtering corresponding boxes.
Examples:
>>> masks = torch.rand(5, 640, 640) > 0.5 # 5 random binary masks
>>> new_masks, keep = remove_small_regions(masks, min_area=100, nms_thresh=0.7)
>>> print(f"Original masks: {masks.shape}, Processed masks: {new_masks.shape}")
>>> print(f"Indices of kept masks: {keep}")
"""
import torchvision # scope for faster 'import ultralytics'
if len(masks) == 0:
return masks
# Filter small disconnected regions and holes
new_masks = []
scores = []
for mask in masks:
mask = mask.cpu().numpy().astype(np.uint8)
mask, changed = remove_small_regions(mask, min_area, mode="holes")
unchanged = not changed
mask, changed = remove_small_regions(mask, min_area, mode="islands")
unchanged = unchanged and not changed
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
# Give score=0 to changed masks and 1 to unchanged masks so NMS prefers masks not needing postprocessing
scores.append(float(unchanged))
# Recalculate boxes and remove any new duplicates
new_masks = torch.cat(new_masks, dim=0)
boxes = batched_mask_to_box(new_masks)
keep = torchvision.ops.nms(boxes.float(), torch.as_tensor(scores), nms_thresh)
return new_masks[keep].to(device=masks.device, dtype=masks.dtype), keep
class SAM2Predictor(Predictor):
"""
SAM2Predictor class for advanced image segmentation using Segment Anything Model 2 architecture.
This class extends the base Predictor class to implement SAM2-specific functionality for image
segmentation tasks. It provides methods for model initialization, feature extraction, and
prompt-based inference.
Attributes:
_bb_feat_sizes (List[Tuple[int, int]]): Feature sizes for different backbone levels.
model (torch.nn.Module): The loaded SAM2 model.
device (torch.device): The device (CPU or GPU) on which the model is loaded.
features (Dict[str, torch.Tensor]): Cached image features for efficient inference.
segment_all (bool): Flag to indicate if all segments should be predicted.
prompts (Dict): Dictionary to store various types of prompts for inference.
Methods:
get_model: Retrieves and initializes the SAM2 model.
prompt_inference: Performs image segmentation inference based on various prompts.
set_image: Preprocesses and sets a single image for inference.
get_im_features: Extracts and processes image features using SAM2's image encoder.
Examples:
>>> predictor = SAM2Predictor(cfg)
>>> predictor.set_image("path/to/image.jpg")
>>> bboxes = [[100, 100, 200, 200]]
>>> result = predictor(bboxes=bboxes)[0]
>>> print(f"Predicted {len(result.masks)} masks with average score {result.boxes.conf.mean():.2f}")
"""
_bb_feat_sizes = [
(256, 256),
(128, 128),
(64, 64),
]
def get_model(self):
"""Retrieves and initializes the Segment Anything Model 2 (SAM2) for image segmentation tasks."""
return build_sam(self.args.model)
def prompt_inference(
self,
im,
bboxes=None,
points=None,
labels=None,
masks=None,
multimask_output=False,
img_idx=-1,
):
"""
Performs image segmentation inference based on various prompts using SAM2 architecture.
This method leverages the Segment Anything Model 2 (SAM2) to generate segmentation masks for input images
based on provided prompts such as bounding boxes, points, or existing masks. It supports both single and
multi-object prediction scenarios.
Args:
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
bboxes (np.ndarray | List[List[float]] | None): Bounding boxes in XYXY format with shape (N, 4).
points (np.ndarray | List[List[float]] | None): Object location points with shape (N, 2), in pixels.
labels (np.ndarray | List[int] | None): Point prompt labels with shape (N,). 1 = foreground, 0 = background.
masks (np.ndarray | None): Low-resolution masks from previous predictions with shape (N, H, W).
multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
img_idx (int): Index of the image in the batch to process.
Returns:
(np.ndarray): Output masks with shape (C, H, W), where C is the number of generated masks.
(np.ndarray): Quality scores for each mask, with length C.
Examples:
>>> predictor = SAM2Predictor(cfg)
>>> image = torch.rand(1, 3, 640, 640)
>>> bboxes = [[100, 100, 200, 200]]
>>> result = predictor(image, bboxes=bboxes)[0]
>>> print(f"Generated {result.masks.shape[0]} masks with average score {result.boxes.conf.mean():.2f}")
Notes:
- The method supports batched inference for multiple objects when points or bboxes are provided.
- Input prompts (bboxes, points) are automatically scaled to match the input image dimensions.
- When both bboxes and points are provided, they are merged into a single 'points' input for the model.
References:
- SAM2 Paper: [Add link to SAM2 paper when available]
"""
features = self.get_im_features(im) if self.features is None else self.features
points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
points = (points, labels) if points is not None else None
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
points=points,
boxes=None,
masks=masks,
)
# Predict masks
batched_mode = points is not None and points[0].shape[0] > 1 # multi object prediction
high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]]
pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder(
image_embeddings=features["image_embed"][img_idx].unsqueeze(0),
image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
repeat_image=batched_mode,
high_res_features=high_res_features,
)
# (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
# `d` could be 1 or 3 depends on `multimask_output`.
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None):
"""
Prepares and transforms the input prompts for processing based on the destination shape.
Args:
dst_shape (tuple): The target shape (height, width) for the prompts.
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.
masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array.
Raises:
AssertionError: If the number of points don't match the number of labels, in case labels were passed.
Returns:
(tuple): A tuple containing transformed points, labels, and masks.
"""
bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, bboxes, points, labels, masks)
if bboxes is not None:
bboxes = bboxes.view(-1, 2, 2)
bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(len(bboxes), -1)
# NOTE: merge "boxes" and "points" into a single "points" input
# (where boxes are added at the beginning) to model.sam_prompt_encoder
if points is not None:
points = torch.cat([bboxes, points], dim=1)
labels = torch.cat([bbox_labels, labels], dim=1)
else:
points, labels = bboxes, bbox_labels
return points, labels, masks
def set_image(self, image):
"""
Preprocesses and sets a single image for inference using the SAM2 model.
This method initializes the model if not already done, configures the data source to the specified image,
and preprocesses the image for feature extraction. It supports setting only one image at a time.
Args:
image (str | np.ndarray): Path to the image file as a string, or a numpy array representing the image.
Raises:
AssertionError: If more than one image is attempted to be set.
Examples:
>>> predictor = SAM2Predictor()
>>> predictor.set_image("path/to/image.jpg")
>>> predictor.set_image(np.array([...])) # Using a numpy array
Notes:
- This method must be called before performing any inference on a new image.
- The method caches the extracted features for efficient subsequent inferences on the same image.
- Only one image can be set at a time. To process multiple images, call this method for each new image.
"""
if self.model is None:
self.setup_model(model=None)
self.setup_source(image)
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
for batch in self.dataset:
im = self.preprocess(batch[1])
self.features = self.get_im_features(im)
break
def get_im_features(self, im):
"""Extracts image features from the SAM image encoder for subsequent processing."""
assert isinstance(self.imgsz, (tuple, list)) and self.imgsz[0] == self.imgsz[1], (
f"SAM 2 models only support square image size, but got {self.imgsz}."
)
self.model.set_imgsz(self.imgsz)
self._bb_feat_sizes = [[x // (4 * i) for x in self.imgsz] for i in [1, 2, 4]]
backbone_out = self.model.forward_image(im)
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
if self.model.directly_add_no_mem_embed:
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
feats = [
feat.permute(1, 2, 0).view(1, -1, *feat_size)
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
][::-1]
return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
class SAM2VideoPredictor(SAM2Predictor):
"""
SAM2VideoPredictor to handle user interactions with videos and manage inference states.
This class extends the functionality of SAM2Predictor to support video processing and maintains
the state of inference operations. It includes configurations for managing non-overlapping masks,
clearing memory for non-conditional inputs, and setting up callbacks for prediction events.
Attributes:
inference_state (Dict): A dictionary to store the current state of inference operations.
non_overlap_masks (bool): A flag indicating whether masks should be non-overlapping.
clear_non_cond_mem_around_input (bool): A flag to control clearing non-conditional memory around inputs.
clear_non_cond_mem_for_multi_obj (bool): A flag to control clearing non-conditional memory for multi-object scenarios.
callbacks (Dict): A dictionary of callbacks for various prediction lifecycle events.
Args:
cfg (Dict, Optional): Configuration settings for the predictor. Defaults to DEFAULT_CFG.
overrides (Dict, Optional): Additional configuration overrides. Defaults to None.
_callbacks (List, Optional): Custom callbacks to be added. Defaults to None.
Note:
The `fill_hole_area` attribute is defined but not used in the current implementation.
"""
# fill_hole_area = 8 # not used
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initialize the predictor with configuration and optional overrides.
This constructor initializes the SAM2VideoPredictor with a given configuration, applies any
specified overrides, and sets up the inference state along with certain flags
that control the behavior of the predictor.
Args:
cfg (Dict): Configuration dictionary containing default settings.
overrides (Dict | None): Dictionary of values to override default configuration.
_callbacks (Dict | None): Dictionary of callback functions to customize behavior.
Examples:
>>> predictor = SAM2VideoPredictor(cfg=DEFAULT_CFG)
>>> predictor_example_with_imgsz = SAM2VideoPredictor(overrides={"imgsz": 640})
>>> predictor_example_with_callback = SAM2VideoPredictor(_callbacks={"on_predict_start": custom_callback})
"""
super().__init__(cfg, overrides, _callbacks)
self.inference_state = {}
self.non_overlap_masks = True
self.clear_non_cond_mem_around_input = False
self.clear_non_cond_mem_for_multi_obj = False
self.callbacks["on_predict_start"].append(self.init_state)
def get_model(self):
"""
Retrieves and configures the model with binarization enabled.
Note:
This method overrides the base class implementation to set the binarize flag to True.
"""
model = super().get_model()
model.set_binarize(True)
return model
def inference(self, im, bboxes=None, points=None, labels=None, masks=None):
"""
Perform image segmentation inference based on the given input cues, using the currently loaded image. This
method leverages SAM's (Segment Anything Model) architecture consisting of image encoder, prompt encoder, and
mask decoder for real-time and promptable segmentation tasks.
Args:
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.
Returns:
(np.ndarray): The output masks in shape CxHxW, where C is the number of generated masks.
(np.ndarray): An array of length C containing quality scores predicted by the model for each mask.
"""
# Override prompts if any stored in self.prompts
bboxes = self.prompts.pop("bboxes", bboxes)
points = self.prompts.pop("points", points)
masks = self.prompts.pop("masks", masks)
frame = self.dataset.frame
self.inference_state["im"] = im
output_dict = self.inference_state["output_dict"]
if len(output_dict["cond_frame_outputs"]) == 0: # initialize prompts
points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
if points is not None:
for i in range(len(points)):
self.add_new_prompts(obj_id=i, points=points[[i]], labels=labels[[i]], frame_idx=frame)
elif masks is not None:
for i in range(len(masks)):
self.add_new_prompts(obj_id=i, masks=masks[[i]], frame_idx=frame)
self.propagate_in_video_preflight()
consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
batch_size = len(self.inference_state["obj_idx_to_id"])
if len(output_dict["cond_frame_outputs"]) == 0:
raise RuntimeError("No points are provided; please add points first")
if frame in consolidated_frame_inds["cond_frame_outputs"]:
storage_key = "cond_frame_outputs"
current_out = output_dict[storage_key][frame]
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
# clear non-conditioning memory of the surrounding frames
self._clear_non_cond_mem_around_input(frame)
elif frame in consolidated_frame_inds["non_cond_frame_outputs"]:
storage_key = "non_cond_frame_outputs"
current_out = output_dict[storage_key][frame]
else:
storage_key = "non_cond_frame_outputs"
current_out = self._run_single_frame_inference(
output_dict=output_dict,
frame_idx=frame,
batch_size=batch_size,
is_init_cond_frame=False,
point_inputs=None,
mask_inputs=None,
reverse=False,
run_mem_encoder=True,
)
output_dict[storage_key][frame] = current_out
# Create slices of per-object outputs for subsequent interaction with each
# individual object after tracking.
self._add_output_per_object(frame, current_out, storage_key)
self.inference_state["frames_already_tracked"].append(frame)
pred_masks = current_out["pred_masks"].flatten(0, 1)
pred_masks = pred_masks[(pred_masks > self.model.mask_threshold).sum((1, 2)) > 0] # filter blank masks
return pred_masks, torch.ones(len(pred_masks), dtype=pred_masks.dtype, device=pred_masks.device)
def postprocess(self, preds, img, orig_imgs):
"""
Post-processes the predictions to apply non-overlapping constraints if required.
This method extends the post-processing functionality by applying non-overlapping constraints
to the predicted masks if the `non_overlap_masks` flag is set to True. This ensures that
the masks do not overlap, which can be useful for certain applications.
Args:
preds (Tuple[torch.Tensor]): The predictions from the model.
img (torch.Tensor): The processed image tensor.
orig_imgs (List[np.ndarray]): The original images before processing.
Returns:
results (list): The post-processed predictions.
Note:
If `non_overlap_masks` is True, the method applies constraints to ensure non-overlapping masks.
"""
results = super().postprocess(preds, img, orig_imgs)
if self.non_overlap_masks:
for result in results:
if result.masks is None or len(result.masks) == 0:
continue
result.masks.data = self.model._apply_non_overlapping_constraints(result.masks.data.unsqueeze(0))[0]
return results
@smart_inference_mode()
def add_new_prompts(
self,
obj_id,
points=None,
labels=None,
masks=None,
frame_idx=0,
):
"""
Adds new points or masks to a specific frame for a given object ID.
This method updates the inference state with new prompts (points or masks) for a specified
object and frame index. It ensures that the prompts are either points or masks, but not both,
and updates the internal state accordingly. It also handles the generation of new segmentations
based on the provided prompts and the existing state.
Args:
obj_id (int): The ID of the object to which the prompts are associated.
points (torch.Tensor, Optional): The coordinates of the points of interest. Defaults to None.
labels (torch.Tensor, Optional): The labels corresponding to the points. Defaults to None.
masks (torch.Tensor, optional): Binary masks for the object. Defaults to None.
frame_idx (int, optional): The index of the frame to which the prompts are applied. Defaults to 0.
Returns:
(tuple): A tuple containing the flattened predicted masks and a tensor of ones indicating the number of objects.
Raises:
AssertionError: If both `masks` and `points` are provided, or neither is provided.
Note:
- Only one type of prompt (either points or masks) can be added per call.
- If the frame is being tracked for the first time, it is treated as an initial conditioning frame.
- The method handles the consolidation of outputs and resizing of masks to the original video resolution.
"""
assert (masks is None) ^ (points is None), "'masks' and 'points' prompts are not compatible with each other."
obj_idx = self._obj_id_to_idx(obj_id)
point_inputs = None
pop_key = "point_inputs_per_obj"
if points is not None:
point_inputs = {"point_coords": points, "point_labels": labels}
self.inference_state["point_inputs_per_obj"][obj_idx][frame_idx] = point_inputs
pop_key = "mask_inputs_per_obj"
self.inference_state["mask_inputs_per_obj"][obj_idx][frame_idx] = masks
self.inference_state[pop_key][obj_idx].pop(frame_idx, None)
# If this frame hasn't been tracked before, we treat it as an initial conditioning
# frame, meaning that the inputs points are to generate segments on this frame without
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
# the input points will be used to correct the already tracked masks.
is_init_cond_frame = frame_idx not in self.inference_state["frames_already_tracked"]
obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx]
obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx]
# Add a frame to conditioning output if it's an initial conditioning frame or
# if the model sees all frames receiving clicks/mask as conditioning frames.
is_cond = is_init_cond_frame or self.model.add_all_frames_to_correct_as_cond
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Get any previously predicted mask logits on this object and feed it along with
# the new clicks into the SAM mask decoder.
prev_sam_mask_logits = None
# lookup temporary output dict first, which contains the most recent output
# (if not found, then lookup conditioning and non-conditioning frame output)
if point_inputs is not None:
prev_out = (
obj_temp_output_dict[storage_key].get(frame_idx)
or obj_output_dict["cond_frame_outputs"].get(frame_idx)
or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
)
if prev_out is not None and prev_out.get("pred_masks") is not None:
prev_sam_mask_logits = prev_out["pred_masks"].to(device=self.device, non_blocking=True)
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
prev_sam_mask_logits.clamp_(-32.0, 32.0)
current_out = self._run_single_frame_inference(
output_dict=obj_output_dict, # run on the slice of a single object
frame_idx=frame_idx,
batch_size=1, # run on the slice of a single object
is_init_cond_frame=is_init_cond_frame,
point_inputs=point_inputs,
mask_inputs=masks,
reverse=False,
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
# allows us to enforce non-overlapping constraints on all objects before encoding
# them into memory.
run_mem_encoder=False,
prev_sam_mask_logits=prev_sam_mask_logits,
)
# Add the output to the output dict (to be used as future memory)
obj_temp_output_dict[storage_key][frame_idx] = current_out
# Resize the output mask to the original video resolution
consolidated_out = self._consolidate_temp_output_across_obj(
frame_idx,
is_cond=is_cond,
run_mem_encoder=False,
)
pred_masks = consolidated_out["pred_masks"].flatten(0, 1)
return pred_masks.flatten(0, 1), torch.ones(1, dtype=pred_masks.dtype, device=pred_masks.device)
@smart_inference_mode()
def propagate_in_video_preflight(self):
"""
Prepare inference_state and consolidate temporary outputs before tracking.
This method marks the start of tracking, disallowing the addition of new objects until the session is reset.
It consolidates temporary outputs from `temp_output_dict_per_obj` and merges them into `output_dict`.
Additionally, it clears non-conditioning memory around input frames and ensures that the state is consistent
with the provided inputs.
"""
# Tracking has started and we don't allow adding new objects until session is reset.
self.inference_state["tracking_has_started"] = True
batch_size = len(self.inference_state["obj_idx_to_id"])
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
# add them into "output_dict".
temp_output_dict_per_obj = self.inference_state["temp_output_dict_per_obj"]
output_dict = self.inference_state["output_dict"]
# "consolidated_frame_inds" contains indices of those frames where consolidated
# temporary outputs have been added (either in this call or any previous calls
# to `propagate_in_video_preflight`).
consolidated_frame_inds = self.inference_state["consolidated_frame_inds"]
for is_cond in {False, True}:
# Separately consolidate conditioning and non-conditioning temp outputs
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Find all the frames that contain temporary outputs for any objects
# (these should be the frames that have just received clicks for mask inputs
# via `add_new_points` or `add_new_mask`)
temp_frame_inds = set()
for obj_temp_output_dict in temp_output_dict_per_obj.values():
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
consolidated_frame_inds[storage_key].update(temp_frame_inds)
# consolidate the temporary output across all objects on this frame
for frame_idx in temp_frame_inds:
consolidated_out = self._consolidate_temp_output_across_obj(
frame_idx, is_cond=is_cond, run_mem_encoder=True
)
# merge them into "output_dict" and also create per-object slices
output_dict[storage_key][frame_idx] = consolidated_out
self._add_output_per_object(frame_idx, consolidated_out, storage_key)
if self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1):
# clear non-conditioning memory of the surrounding frames
self._clear_non_cond_mem_around_input(frame_idx)
# clear temporary outputs in `temp_output_dict_per_obj`
for obj_temp_output_dict in temp_output_dict_per_obj.values():
obj_temp_output_dict[storage_key].clear()
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
# output on the same frame in "non_cond_frame_outputs"
for frame_idx in output_dict["cond_frame_outputs"]:
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
for obj_output_dict in self.inference_state["output_dict_per_obj"].values():
for frame_idx in obj_output_dict["cond_frame_outputs"]:
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
assert frame_idx in output_dict["cond_frame_outputs"]
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
# with either points or mask inputs (which should be true under a correct workflow).
all_consolidated_frame_inds = (
consolidated_frame_inds["cond_frame_outputs"] | consolidated_frame_inds["non_cond_frame_outputs"]
)
input_frames_inds = set()
for point_inputs_per_frame in self.inference_state["point_inputs_per_obj"].values():
input_frames_inds.update(point_inputs_per_frame.keys())
for mask_inputs_per_frame in self.inference_state["mask_inputs_per_obj"].values():
input_frames_inds.update(mask_inputs_per_frame.keys())
assert all_consolidated_frame_inds == input_frames_inds
@staticmethod
def init_state(predictor):
"""
Initialize an inference state for the predictor.
This function sets up the initial state required for performing inference on video data.
It includes initializing various dictionaries and ordered dictionaries that will store
inputs, outputs, and other metadata relevant to the tracking process.
Args:
predictor (SAM2VideoPredictor): The predictor object for which to initialize the state.
"""
if len(predictor.inference_state) > 0: # means initialized
return
assert predictor.dataset is not None
assert predictor.dataset.mode == "video"
inference_state = {
"num_frames": predictor.dataset.frames,
"point_inputs_per_obj": {}, # inputs points on each frame
"mask_inputs_per_obj": {}, # inputs mask on each frame
"constants": {}, # values that don't change across frames (so we only need to hold one copy of them)
# mapping between client-side object id and model-side object index
"obj_id_to_idx": OrderedDict(),
"obj_idx_to_id": OrderedDict(),
"obj_ids": [],
# A storage to hold the model's tracking results and states on each frame
"output_dict": {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
},
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
"output_dict_per_obj": {},
# A temporary storage to hold new outputs when user interact with a frame
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
"temp_output_dict_per_obj": {},
# Frames that already holds consolidated outputs from click or mask inputs
# (we directly use their consolidated outputs during tracking)
"consolidated_frame_inds": {
"cond_frame_outputs": set(), # set containing frame indices
"non_cond_frame_outputs": set(), # set containing frame indices
},
# metadata for each tracking frame (e.g. which direction it's tracked)
"tracking_has_started": False,
"frames_already_tracked": [],
}
predictor.inference_state = inference_state
def get_im_features(self, im, batch=1):
"""
Extracts and processes image features using SAM2's image encoder for subsequent segmentation tasks.
Args:
im (torch.Tensor): The input image tensor.
batch (int, optional): The batch size for expanding features if there are multiple prompts. Defaults to 1.
Returns:
vis_feats (torch.Tensor): The visual features extracted from the image.
vis_pos_embed (torch.Tensor): The positional embeddings for the visual features.
feat_sizes (List(Tuple[int])): A list containing the sizes of the extracted features.
Note:
- If `batch` is greater than 1, the features are expanded to fit the batch size.
- The method leverages the model's `_prepare_backbone_features` method to prepare the backbone features.
"""
backbone_out = self.model.forward_image(im)
if batch > 1: # expand features if there's more than one prompt
for i, feat in enumerate(backbone_out["backbone_fpn"]):
backbone_out["backbone_fpn"][i] = feat.expand(batch, -1, -1, -1)
for i, pos in enumerate(backbone_out["vision_pos_enc"]):
pos = pos.expand(batch, -1, -1, -1)
backbone_out["vision_pos_enc"][i] = pos
_, vis_feats, vis_pos_embed, feat_sizes = self.model._prepare_backbone_features(backbone_out)
return vis_feats, vis_pos_embed, feat_sizes
def _obj_id_to_idx(self, obj_id):
"""
Map client-side object id to model-side object index.
Args:
obj_id (int): The unique identifier of the object provided by the client side.
Returns:
obj_idx (int): The index of the object on the model side.
Raises:
RuntimeError: If an attempt is made to add a new object after tracking has started.
Note:
- The method updates or retrieves mappings between object IDs and indices stored in
`inference_state`.
- It ensures that new objects can only be added before tracking commences.
- It maintains two-way mappings between IDs and indices (`obj_id_to_idx` and `obj_idx_to_id`).
- Additional data structures are initialized for the new object to store inputs and outputs.
"""
obj_idx = self.inference_state["obj_id_to_idx"].get(obj_id, None)
if obj_idx is not None:
return obj_idx
# This is a new object id not sent to the server before. We only allow adding
# new objects *before* the tracking starts.
allow_new_object = not self.inference_state["tracking_has_started"]
if allow_new_object:
# get the next object slot
obj_idx = len(self.inference_state["obj_id_to_idx"])
self.inference_state["obj_id_to_idx"][obj_id] = obj_idx
self.inference_state["obj_idx_to_id"][obj_idx] = obj_id
self.inference_state["obj_ids"] = list(self.inference_state["obj_id_to_idx"])
# set up input and output structures for this object
self.inference_state["point_inputs_per_obj"][obj_idx] = {}
self.inference_state["mask_inputs_per_obj"][obj_idx] = {}
self.inference_state["output_dict_per_obj"][obj_idx] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
self.inference_state["temp_output_dict_per_obj"][obj_idx] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
return obj_idx
else:
raise RuntimeError(
f"Cannot add new object id {obj_id} after tracking starts. "
f"All existing object ids: {self.inference_state['obj_ids']}. "
f"Please call 'reset_state' to restart from scratch."
)
def _run_single_frame_inference(
self,
output_dict,
frame_idx,
batch_size,
is_init_cond_frame,
point_inputs,
mask_inputs,
reverse,
run_mem_encoder,
prev_sam_mask_logits=None,
):
"""
Run tracking on a single frame based on current inputs and previous memory.
Args:
output_dict (Dict): The dictionary containing the output states of the tracking process.
frame_idx (int): The index of the current frame.
batch_size (int): The batch size for processing the frame.
is_init_cond_frame (bool): Indicates if the current frame is an initial conditioning frame.
point_inputs (Dict, Optional): Input points and their labels. Defaults to None.
mask_inputs (torch.Tensor, Optional): Input binary masks. Defaults to None.
reverse (bool): Indicates if the tracking should be performed in reverse order.
run_mem_encoder (bool): Indicates if the memory encoder should be executed.
prev_sam_mask_logits (torch.Tensor, Optional): Previous mask logits for the current object. Defaults to None.
Returns:
current_out (dict): A dictionary containing the output of the tracking step, including updated features and predictions.
Raises:
AssertionError: If both `point_inputs` and `mask_inputs` are provided, or neither is provided.
Note:
- The method assumes that `point_inputs` and `mask_inputs` are mutually exclusive.
- The method retrieves image features using the `get_im_features` method.
- The `maskmem_pos_enc` is assumed to be constant across frames, hence only one copy is stored.
- The `fill_holes_in_mask_scores` function is commented out and currently unsupported due to CUDA extension requirements.
"""
# Retrieve correct image features
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(
self.inference_state["im"], batch_size
)
# point and mask should not appear as input simultaneously on the same frame
assert point_inputs is None or mask_inputs is None
current_out = self.model.track_step(
frame_idx=frame_idx,
is_init_cond_frame=is_init_cond_frame,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
output_dict=output_dict,
num_frames=self.inference_state["num_frames"],
track_in_reverse=reverse,
run_mem_encoder=run_mem_encoder,
prev_sam_mask_logits=prev_sam_mask_logits,
)
maskmem_features = current_out["maskmem_features"]
if maskmem_features is not None:
current_out["maskmem_features"] = maskmem_features.to(
dtype=torch.float16, device=self.device, non_blocking=True
)
# NOTE: Do not support the `fill_holes_in_mask_scores` function since it needs cuda extensions
# potentially fill holes in the predicted masks
# if self.fill_hole_area > 0:
# pred_masks = current_out["pred_masks"].to(self.device, non_blocking=True)
# pred_masks = fill_holes_in_mask_scores(pred_masks, self.fill_hole_area)
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
current_out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(current_out["maskmem_pos_enc"])
return current_out
def _get_maskmem_pos_enc(self, out_maskmem_pos_enc):
"""
Caches and manages the positional encoding for mask memory across frames and objects.
This method optimizes storage by caching the positional encoding (`maskmem_pos_enc`) for
mask memory, which is constant across frames and objects, thus reducing the amount of
redundant information stored during an inference session. It checks if the positional
encoding has already been cached; if not, it caches a slice of the provided encoding.
If the batch size is greater than one, it expands the cached positional encoding to match
the current batch size.
Args:
out_maskmem_pos_enc (List[torch.Tensor] or None): The positional encoding for mask memory.
Should be a list of tensors or None.
Returns:
out_maskmem_pos_enc (List[torch.Tensor]): The positional encoding for mask memory, either cached or expanded.
Note:
- The method assumes that `out_maskmem_pos_enc` is a list of tensors or None.
- Only a single object's slice is cached since the encoding is the same across objects.
- The method checks if the positional encoding has already been cached in the session's constants.
- If the batch size is greater than one, the cached encoding is expanded to fit the batch size.
"""
model_constants = self.inference_state["constants"]
# "out_maskmem_pos_enc" should be either a list of tensors or None
if out_maskmem_pos_enc is not None:
if "maskmem_pos_enc" not in model_constants:
assert isinstance(out_maskmem_pos_enc, list)
# only take the slice for one object, since it's same across objects
maskmem_pos_enc = [x[:1].clone() for x in out_maskmem_pos_enc]
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
else:
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
# expand the cached maskmem_pos_enc to the actual batch size
batch_size = out_maskmem_pos_enc[0].size(0)
if batch_size > 1:
out_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc]
return out_maskmem_pos_enc
def _consolidate_temp_output_across_obj(
self,
frame_idx,
is_cond=False,
run_mem_encoder=False,
):
"""
Consolidates per-object temporary outputs into a single output for all objects.
This method combines the temporary outputs for each object on a given frame into a unified
output. It fills in any missing objects either from the main output dictionary or leaves
placeholders if they do not exist in the main output. Optionally, it can re-run the memory
encoder after applying non-overlapping constraints to the object scores.
Args:
frame_idx (int): The index of the frame for which to consolidate outputs.
is_cond (bool, Optional): Indicates if the frame is considered a conditioning frame.
Defaults to False.
run_mem_encoder (bool, Optional): Specifies whether to run the memory encoder after
consolidating the outputs. Defaults to False.
Returns:
consolidated_out (dict): A consolidated output dictionary containing the combined results for all objects.
Note:
- The method initializes the consolidated output with placeholder values for missing objects.
- It searches for outputs in both the temporary and main output dictionaries.
- If `run_mem_encoder` is True, it applies non-overlapping constraints and re-runs the memory encoder.
- The `maskmem_features` and `maskmem_pos_enc` are only populated when `run_mem_encoder` is True.
"""
batch_size = len(self.inference_state["obj_idx_to_id"])
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
# will be added when rerunning the memory encoder after applying non-overlapping
# constraints to object scores. Its "pred_masks" are prefilled with a large
# negative value (NO_OBJ_SCORE) to represent missing objects.
consolidated_out = {
"maskmem_features": None,
"maskmem_pos_enc": None,
"pred_masks": torch.full(
size=(batch_size, 1, self.imgsz[0] // 4, self.imgsz[1] // 4),
fill_value=-1024.0,
dtype=torch.float32,
device=self.device,
),
"obj_ptr": torch.full(
size=(batch_size, self.model.hidden_dim),
fill_value=-1024.0,
dtype=torch.float32,
device=self.device,
),
"object_score_logits": torch.full(
size=(batch_size, 1),
# default to 10.0 for object_score_logits, i.e. assuming the object is
# present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
fill_value=10.0,
dtype=torch.float32,
device=self.device,
),
}
for obj_idx in range(batch_size):
obj_temp_output_dict = self.inference_state["temp_output_dict_per_obj"][obj_idx]
obj_output_dict = self.inference_state["output_dict_per_obj"][obj_idx]
out = (
obj_temp_output_dict[storage_key].get(frame_idx)
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
# we fall back and look up its previous output in "output_dict_per_obj".
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
# "output_dict_per_obj" to find a previous output for this object.
or obj_output_dict["cond_frame_outputs"].get(frame_idx)
or obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
)
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
# placeholder above) and set its object pointer to be a dummy pointer.
if out is None:
# Fill in dummy object pointers for those objects without any inputs or
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
# i.e. when we need to build the memory for tracking).
if run_mem_encoder:
# fill object pointer with a dummy pointer (based on an empty mask)
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = self._get_empty_mask_ptr(frame_idx)
continue
# Add the temporary object output mask to consolidated output mask
consolidated_out["pred_masks"][obj_idx : obj_idx + 1] = out["pred_masks"]
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
# Optionally, apply non-overlapping constraints on the consolidated scores and rerun the memory encoder
if run_mem_encoder:
high_res_masks = F.interpolate(
consolidated_out["pred_masks"],
size=self.imgsz,
mode="bilinear",
align_corners=False,
)
if self.model.non_overlap_masks_for_mem_enc:
high_res_masks = self.model._apply_non_overlapping_constraints(high_res_masks)
consolidated_out["maskmem_features"], consolidated_out["maskmem_pos_enc"] = self._run_memory_encoder(
batch_size=batch_size,
high_res_masks=high_res_masks,
is_mask_from_pts=True, # these frames are what the user interacted with
object_score_logits=consolidated_out["object_score_logits"],
)
return consolidated_out
def _get_empty_mask_ptr(self, frame_idx):
"""
Get a dummy object pointer based on an empty mask on the current frame.
Args:
frame_idx (int): The index of the current frame for which to generate the dummy object pointer.
Returns:
(torch.Tensor): A tensor representing the dummy object pointer generated from the empty mask.
"""
# Retrieve correct image features
current_vision_feats, current_vision_pos_embeds, feat_sizes = self.get_im_features(self.inference_state["im"])
# Feed the empty mask and image feature above to get a dummy object pointer
current_out = self.model.track_step(
frame_idx=frame_idx,
is_init_cond_frame=True,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=None,
# A dummy (empty) mask with a single object
mask_inputs=torch.zeros((1, 1, *self.imgsz), dtype=torch.float32, device=self.device),
output_dict={},
num_frames=self.inference_state["num_frames"],
track_in_reverse=False,
run_mem_encoder=False,
prev_sam_mask_logits=None,
)
return current_out["obj_ptr"]
def _run_memory_encoder(self, batch_size, high_res_masks, object_score_logits, is_mask_from_pts):
"""
Run the memory encoder on masks.
This is usually after applying non-overlapping constraints to object scores. Since their scores changed, their
memory also needs to be computed again with the memory encoder.
Args:
batch_size (int): The batch size for processing the frame.
high_res_masks (torch.Tensor): High-resolution masks for which to compute the memory.
object_score_logits (torch.Tensor): Logits representing the object scores.
is_mask_from_pts (bool): Indicates if the mask is derived from point interactions.
Returns:
(tuple[torch.Tensor, torch.Tensor]): A tuple containing the encoded mask features and positional encoding.
"""
# Retrieve correct image features
current_vision_feats, _, feat_sizes = self.get_im_features(self.inference_state["im"], batch_size)
maskmem_features, maskmem_pos_enc = self.model._encode_new_memory(
current_vision_feats=current_vision_feats,
feat_sizes=feat_sizes,
pred_masks_high_res=high_res_masks,
is_mask_from_pts=is_mask_from_pts,
object_score_logits=object_score_logits,
)
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
maskmem_pos_enc = self._get_maskmem_pos_enc(maskmem_pos_enc)
return maskmem_features.to(dtype=torch.float16, device=self.device, non_blocking=True), maskmem_pos_enc
def _add_output_per_object(self, frame_idx, current_out, storage_key):
"""
Split a multi-object output into per-object output slices and add them into Output_Dict_Per_Obj.
The resulting slices share the same tensor storage.
Args:
frame_idx (int): The index of the current frame.
current_out (Dict): The current output dictionary containing multi-object outputs.
storage_key (str): The key used to store the output in the per-object output dictionary.
"""
maskmem_features = current_out["maskmem_features"]
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
maskmem_pos_enc = current_out["maskmem_pos_enc"]
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
for obj_idx, obj_output_dict in self.inference_state["output_dict_per_obj"].items():
obj_slice = slice(obj_idx, obj_idx + 1)
obj_out = {
"maskmem_features": None,
"maskmem_pos_enc": None,
"pred_masks": current_out["pred_masks"][obj_slice],
"obj_ptr": current_out["obj_ptr"][obj_slice],
}
if maskmem_features is not None:
obj_out["maskmem_features"] = maskmem_features[obj_slice]
if maskmem_pos_enc is not None:
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
obj_output_dict[storage_key][frame_idx] = obj_out
def _clear_non_cond_mem_around_input(self, frame_idx):
"""
Remove the non-conditioning memory around the input frame.
When users provide correction clicks, the surrounding frames' non-conditioning memories can still contain outdated
object appearance information and could confuse the model. This method clears those non-conditioning memories
surrounding the interacted frame to avoid giving the model both old and new information about the object.
Args:
frame_idx (int): The index of the current frame where user interaction occurred.
"""
r = self.model.memory_temporal_stride_for_eval
frame_idx_begin = frame_idx - r * self.model.num_maskmem
frame_idx_end = frame_idx + r * self.model.num_maskmem
for t in range(frame_idx_begin, frame_idx_end + 1):
self.inference_state["output_dict"]["non_cond_frame_outputs"].pop(t, None)
for obj_output_dict in self.inference_state["output_dict_per_obj"].values():
obj_output_dict["non_cond_frame_outputs"].pop(t, None)
|