File size: 52,751 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import List

import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import trunc_normal_

from ultralytics.nn.modules import MLP

from .blocks import SAM2TwoWayTransformer
from .decoders import MaskDecoder, SAM2MaskDecoder
from .encoders import ImageEncoderViT, PromptEncoder
from .utils import get_1d_sine_pe, select_closest_cond_frames

# a large negative value as a placeholder score for missing objects
NO_OBJ_SCORE = -1024.0


class SAMModel(nn.Module):
    """
    Segment Anything Model (SAM) for object segmentation tasks.

    This class combines image encoders, prompt encoders, and mask decoders to predict object masks from images
    and input prompts.

    Attributes:
        mask_threshold (float): Threshold value for mask prediction.
        image_encoder (ImageEncoderViT): Backbone for encoding images into embeddings.
        prompt_encoder (PromptEncoder): Encoder for various types of input prompts.
        mask_decoder (MaskDecoder): Predicts object masks from image and prompt embeddings.

    Methods:
        __init__: Initializes the SAMModel with encoders, decoder, and normalization parameters.

    Examples:
        >>> image_encoder = ImageEncoderViT(...)
        >>> prompt_encoder = PromptEncoder(...)
        >>> mask_decoder = MaskDecoder(...)
        >>> sam_model = SAMModel(image_encoder, prompt_encoder, mask_decoder)
        >>> # Further usage depends on SAMPredictor class

    Notes:
        All forward() operations are implemented in the SAMPredictor class.
    """

    mask_threshold: float = 0.0

    def __init__(
        self,
        image_encoder: ImageEncoderViT,
        prompt_encoder: PromptEncoder,
        mask_decoder: MaskDecoder,
        pixel_mean: List[float] = (123.675, 116.28, 103.53),
        pixel_std: List[float] = (58.395, 57.12, 57.375),
    ) -> None:
        """
        Initialize the SAMModel class to predict object masks from an image and input prompts.

        Args:
            image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
            prompt_encoder (PromptEncoder): Encodes various types of input prompts.
            mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
            pixel_mean (List[float]): Mean values for normalizing pixels in the input image.
            pixel_std (List[float]): Std values for normalizing pixels in the input image.

        Examples:
            >>> image_encoder = ImageEncoderViT(...)
            >>> prompt_encoder = PromptEncoder(...)
            >>> mask_decoder = MaskDecoder(...)
            >>> sam_model = SAMModel(image_encoder, prompt_encoder, mask_decoder)
            >>> # Further usage depends on SAMPredictor class

        Notes:
            All forward() operations moved to SAMPredictor.
        """
        super().__init__()
        self.image_encoder = image_encoder
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

    def set_imgsz(self, imgsz):
        """
        Set image size to make model compatible with different image sizes.

        Args:
            imgsz (Tuple[int, int]): The size of the input image.
        """
        if hasattr(self.image_encoder, "set_imgsz"):
            self.image_encoder.set_imgsz(imgsz)
        self.prompt_encoder.input_image_size = imgsz
        self.prompt_encoder.image_embedding_size = [x // 16 for x in imgsz]  # 16 is fixed as patch size of ViT model
        self.image_encoder.img_size = imgsz[0]


class SAM2Model(torch.nn.Module):
    """
    SAM2Model class for Segment Anything Model 2 with memory-based video object segmentation capabilities.

    This class extends the functionality of SAM to handle video sequences, incorporating memory mechanisms
    for temporal consistency and efficient tracking of objects across frames.

    Attributes:
        mask_threshold (float): Threshold value for mask prediction.
        image_encoder (ImageEncoderViT): Visual encoder for extracting image features.
        memory_attention (nn.Module): Module for attending to memory features.
        memory_encoder (nn.Module): Encoder for generating memory representations.
        num_maskmem (int): Number of accessible memory frames.
        image_size (int): Size of input images.
        backbone_stride (int): Stride of the backbone network output.
        sam_prompt_embed_dim (int): Dimension of SAM prompt embeddings.
        sam_image_embedding_size (int): Size of SAM image embeddings.
        sam_prompt_encoder (PromptEncoder): Encoder for processing input prompts.
        sam_mask_decoder (SAM2MaskDecoder): Decoder for generating object masks.
        obj_ptr_proj (nn.Module): Projection layer for object pointers.
        obj_ptr_tpos_proj (nn.Module): Projection for temporal positional encoding in object pointers.

    Methods:
        forward_image: Processes image batch through encoder to extract multi-level features.
        track_step: Performs a single tracking step, updating object masks and memory features.

    Examples:
        >>> model = SAM2Model(image_encoder, memory_attention, memory_encoder)
        >>> image_batch = torch.rand(1, 3, 512, 512)
        >>> features = model.forward_image(image_batch)
        >>> track_results = model.track_step(0, True, features, None, None, None, {})
    """

    mask_threshold: float = 0.0

    def __init__(
        self,
        image_encoder,
        memory_attention,
        memory_encoder,
        num_maskmem=7,
        image_size=512,
        backbone_stride=16,
        sigmoid_scale_for_mem_enc=1.0,
        sigmoid_bias_for_mem_enc=0.0,
        binarize_mask_from_pts_for_mem_enc=False,
        use_mask_input_as_output_without_sam=False,
        max_cond_frames_in_attn=-1,
        directly_add_no_mem_embed=False,
        use_high_res_features_in_sam=False,
        multimask_output_in_sam=False,
        multimask_min_pt_num=1,
        multimask_max_pt_num=1,
        multimask_output_for_tracking=False,
        use_multimask_token_for_obj_ptr: bool = False,
        iou_prediction_use_sigmoid=False,
        memory_temporal_stride_for_eval=1,
        non_overlap_masks_for_mem_enc=False,
        use_obj_ptrs_in_encoder=False,
        max_obj_ptrs_in_encoder=16,
        add_tpos_enc_to_obj_ptrs=True,
        proj_tpos_enc_in_obj_ptrs=False,
        use_signed_tpos_enc_to_obj_ptrs=False,
        only_obj_ptrs_in_the_past_for_eval=False,
        pred_obj_scores: bool = False,
        pred_obj_scores_mlp: bool = False,
        fixed_no_obj_ptr: bool = False,
        soft_no_obj_ptr: bool = False,
        use_mlp_for_obj_ptr_proj: bool = False,
        no_obj_embed_spatial: bool = False,
        sam_mask_decoder_extra_args=None,
        compile_image_encoder: bool = False,
    ):
        """
        Initializes the SAM2Model for video object segmentation with memory-based tracking.

        Args:
            image_encoder (nn.Module): Visual encoder for extracting image features.
            memory_attention (nn.Module): Module for attending to memory features.
            memory_encoder (nn.Module): Encoder for generating memory representations.
            num_maskmem (int): Number of accessible memory frames. Default is 7 (1 input frame + 6 previous frames).
            image_size (int): Size of input images.
            backbone_stride (int): Stride of the image backbone output.
            sigmoid_scale_for_mem_enc (float): Scale factor for mask sigmoid probability.
            sigmoid_bias_for_mem_enc (float): Bias factor for mask sigmoid probability.
            binarize_mask_from_pts_for_mem_enc (bool): Whether to binarize sigmoid mask logits on interacted frames
                with clicks during evaluation.
            use_mask_input_as_output_without_sam (bool): Whether to directly output the input mask without using SAM
                prompt encoder and mask decoder on frames with mask input.
            max_cond_frames_in_attn (int): Maximum number of conditioning frames to participate in memory attention.
                -1 means no limit.
            directly_add_no_mem_embed (bool): Whether to directly add no-memory embedding to image feature on the
                first frame.
            use_high_res_features_in_sam (bool): Whether to use high-resolution feature maps in the SAM mask decoder.
            multimask_output_in_sam (bool): Whether to output multiple (3) masks for the first click on initial
                conditioning frames.
            multimask_min_pt_num (int): Minimum number of clicks to use multimask output in SAM.
            multimask_max_pt_num (int): Maximum number of clicks to use multimask output in SAM.
            multimask_output_for_tracking (bool): Whether to use multimask output for tracking.
            use_multimask_token_for_obj_ptr (bool): Whether to use multimask tokens for object pointers.
            iou_prediction_use_sigmoid (bool): Whether to use sigmoid to restrict IoU prediction to [0-1].
            memory_temporal_stride_for_eval (int): Memory bank's temporal stride during evaluation.
            non_overlap_masks_for_mem_enc (bool): Whether to apply non-overlapping constraints on object masks in
                memory encoder during evaluation.
            use_obj_ptrs_in_encoder (bool): Whether to cross-attend to object pointers from other frames in the encoder.
            max_obj_ptrs_in_encoder (int): Maximum number of object pointers from other frames in encoder
                cross-attention.
            add_tpos_enc_to_obj_ptrs (bool): Whether to add temporal positional encoding to object pointers in
                the encoder.
            proj_tpos_enc_in_obj_ptrs (bool): Whether to add an extra linear projection layer for temporal positional
                encoding in object pointers.
            use_signed_tpos_enc_to_obj_ptrs (bool): whether to use signed distance (instead of unsigned absolute distance)
                in the temporal positional encoding in the object pointers, only relevant when both `use_obj_ptrs_in_encoder=True`
                and `add_tpos_enc_to_obj_ptrs=True`.
            only_obj_ptrs_in_the_past_for_eval (bool): Whether to only attend to object pointers in the past
                during evaluation.
            pred_obj_scores (bool): Whether to predict if there is an object in the frame.
            pred_obj_scores_mlp (bool): Whether to use an MLP to predict object scores.
            fixed_no_obj_ptr (bool): Whether to have a fixed no-object pointer when there is no object present.
            soft_no_obj_ptr (bool): Whether to mix in no-object pointer softly for easier recovery and error mitigation.
            use_mlp_for_obj_ptr_proj (bool): Whether to use MLP for object pointer projection.
            no_obj_embed_spatial (bool): Whether add no obj embedding to spatial frames.
            sam_mask_decoder_extra_args (Dict | None): Extra arguments for constructing the SAM mask decoder.
            compile_image_encoder (bool): Whether to compile the image encoder for faster inference.

        Examples:
            >>> image_encoder = ImageEncoderViT(...)
            >>> memory_attention = SAM2TwoWayTransformer(...)
            >>> memory_encoder = nn.Sequential(...)
            >>> model = SAM2Model(image_encoder, memory_attention, memory_encoder)
            >>> image_batch = torch.rand(1, 3, 512, 512)
            >>> features = model.forward_image(image_batch)
            >>> track_results = model.track_step(0, True, features, None, None, None, {})
        """
        super().__init__()

        # Part 1: the image backbone
        self.image_encoder = image_encoder
        # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
        self.use_high_res_features_in_sam = use_high_res_features_in_sam
        self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
        self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
        if use_obj_ptrs_in_encoder:
            # A conv layer to downsample the mask prompt to stride 4 (the same stride as
            # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
            # so that it can be fed into the SAM mask decoder to generate a pointer.
            self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
        self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
        if proj_tpos_enc_in_obj_ptrs:
            assert add_tpos_enc_to_obj_ptrs  # these options need to be used together
        self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
        self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
        self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval

        # Part 2: memory attention to condition current frame's visual features
        # with memories (and obj ptrs) from past frames
        self.memory_attention = memory_attention
        self.hidden_dim = memory_attention.d_model

        # Part 3: memory encoder for the previous frame's outputs
        self.memory_encoder = memory_encoder
        self.mem_dim = self.hidden_dim
        if hasattr(self.memory_encoder, "out_proj") and hasattr(self.memory_encoder.out_proj, "weight"):
            # if there is compression of memories along channel dim
            self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
        self.num_maskmem = num_maskmem  # Number of memories accessible
        # Temporal encoding of the memories
        self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim))
        trunc_normal_(self.maskmem_tpos_enc, std=0.02)
        # a single token to indicate no memory embedding from previous frames
        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        trunc_normal_(self.no_mem_embed, std=0.02)
        trunc_normal_(self.no_mem_pos_enc, std=0.02)
        self.directly_add_no_mem_embed = directly_add_no_mem_embed
        # Apply sigmoid to the output raw mask logits (to turn them from
        # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
        self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
        self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
        self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
        # On frames with mask input, whether to directly output the input mask without
        # using a SAM prompt encoder + mask decoder
        self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
        self.multimask_output_in_sam = multimask_output_in_sam
        self.multimask_min_pt_num = multimask_min_pt_num
        self.multimask_max_pt_num = multimask_max_pt_num
        self.multimask_output_for_tracking = multimask_output_for_tracking
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
        self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid

        # Part 4: SAM-style prompt encoder (for both mask and point inputs)
        # and SAM-style mask decoder for the final mask output
        self.image_size = image_size
        self.backbone_stride = backbone_stride
        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
        self.pred_obj_scores = pred_obj_scores
        self.pred_obj_scores_mlp = pred_obj_scores_mlp
        self.fixed_no_obj_ptr = fixed_no_obj_ptr
        self.soft_no_obj_ptr = soft_no_obj_ptr
        if self.fixed_no_obj_ptr:
            assert self.pred_obj_scores
            assert self.use_obj_ptrs_in_encoder
        if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
            self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
            trunc_normal_(self.no_obj_ptr, std=0.02)
        self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
        self.no_obj_embed_spatial = None
        if no_obj_embed_spatial:
            self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
            trunc_normal_(self.no_obj_embed_spatial, std=0.02)

        self._build_sam_heads()
        self.max_cond_frames_in_attn = max_cond_frames_in_attn

        # Model compilation
        if compile_image_encoder:
            # Compile the forward function (not the full module) to allow loading checkpoints.
            print("Image encoder compilation is enabled. First forward pass will be slow.")
            self.image_encoder.forward = torch.compile(
                self.image_encoder.forward,
                mode="max-autotune",
                fullgraph=True,
                dynamic=False,
            )

    @property
    def device(self):
        """Returns the device on which the model's parameters are stored."""
        return next(self.parameters()).device

    def forward(self, *args, **kwargs):
        """Processes image and prompt inputs to generate object masks and scores in video sequences."""
        raise NotImplementedError(
            "Please use the corresponding methods in SAM2VideoPredictor for inference."
            "See notebooks/video_predictor_example.ipynb for an example."
        )

    def _build_sam_heads(self):
        """Builds SAM-style prompt encoder and mask decoder for image segmentation tasks."""
        self.sam_prompt_embed_dim = self.hidden_dim
        self.sam_image_embedding_size = self.image_size // self.backbone_stride

        # Build PromptEncoder and MaskDecoder from SAM (hyperparameters like `mask_in_chans=16` are from SAM code)
        self.sam_prompt_encoder = PromptEncoder(
            embed_dim=self.sam_prompt_embed_dim,
            image_embedding_size=(
                self.sam_image_embedding_size,
                self.sam_image_embedding_size,
            ),
            input_image_size=(self.image_size, self.image_size),
            mask_in_chans=16,
        )
        self.sam_mask_decoder = SAM2MaskDecoder(
            num_multimask_outputs=3,
            transformer=SAM2TwoWayTransformer(
                depth=2,
                embedding_dim=self.sam_prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=self.sam_prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            use_high_res_features=self.use_high_res_features_in_sam,
            iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
            pred_obj_scores=self.pred_obj_scores,
            pred_obj_scores_mlp=self.pred_obj_scores_mlp,
            use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
            **(self.sam_mask_decoder_extra_args or {}),
        )
        if self.use_obj_ptrs_in_encoder:
            # a linear projection on SAM output tokens to turn them into object pointers
            self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
            if self.use_mlp_for_obj_ptr_proj:
                self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
        else:
            self.obj_ptr_proj = torch.nn.Identity()
        if self.proj_tpos_enc_in_obj_ptrs:
            # a linear projection on temporal positional encoding in object pointers to
            # avoid potential interference with spatial positional encoding
            self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
        else:
            self.obj_ptr_tpos_proj = torch.nn.Identity()

    def _forward_sam_heads(
        self,
        backbone_features,
        point_inputs=None,
        mask_inputs=None,
        high_res_features=None,
        multimask_output=False,
    ):
        """
        Forward pass through SAM prompt encoders and mask heads.

        This method processes image features and optional point/mask inputs to generate object masks and scores.

        Args:
            backbone_features (torch.Tensor): Image features with shape (B, C, H, W).
            point_inputs (Dict[str, torch.Tensor] | None): Dictionary containing point prompts.
                'point_coords': Tensor of shape (B, P, 2) with float32 dtype, containing absolute
                    pixel-unit coordinates in (x, y) format for P input points.
                'point_labels': Tensor of shape (B, P) with int32 dtype, where 1 means positive clicks,
                    0 means negative clicks, and -1 means padding.
            mask_inputs (torch.Tensor | None): Mask of shape (B, 1, H*16, W*16), float or bool, with the
                same spatial size as the image.
            high_res_features (List[torch.Tensor] | None): List of two feature maps with shapes
                (B, C, 4*H, 4*W) and (B, C, 2*H, 2*W) respectively, used as high-resolution feature maps
                for SAM decoder.
            multimask_output (bool): If True, output 3 candidate masks and their IoU estimates; if False,
                output only 1 mask and its IoU estimate.

        Returns:
            (Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
                low_res_multimasks: Tensor of shape (B, M, H*4, W*4) with SAM output mask logits.
                high_res_multimasks: Tensor of shape (B, M, H*16, W*16) with upsampled mask logits.
                ious: Tensor of shape (B, M) with estimated IoU for each output mask.
                low_res_masks: Tensor of shape (B, 1, H*4, W*4) with the best low-resolution mask.
                high_res_masks: Tensor of shape (B, 1, H*16, W*16) with the best high-resolution mask.
                obj_ptr: Tensor of shape (B, C) with object pointer vector for the output mask.
                object_score_logits: Tensor of shape (B) with object score logits.

            Where M is 3 if multimask_output=True, and 1 if multimask_output=False.

        Examples:
            >>> backbone_features = torch.rand(1, 256, 32, 32)
            >>> point_inputs = {"point_coords": torch.rand(1, 2, 2), "point_labels": torch.tensor([[1, 0]])}
            >>> mask_inputs = torch.rand(1, 1, 512, 512)
            >>> results = model._forward_sam_heads(backbone_features, point_inputs, mask_inputs)
            >>> (
            ...     low_res_multimasks,
            ...     high_res_multimasks,
            ...     ious,
            ...     low_res_masks,
            ...     high_res_masks,
            ...     obj_ptr,
            ...     object_score_logits,
            ... ) = results
        """
        B = backbone_features.size(0)
        device = backbone_features.device
        assert backbone_features.size(1) == self.sam_prompt_embed_dim
        assert backbone_features.size(2) == self.sam_image_embedding_size
        assert backbone_features.size(3) == self.sam_image_embedding_size

        # a) Handle point prompts
        if point_inputs is not None:
            sam_point_coords = point_inputs["point_coords"]
            sam_point_labels = point_inputs["point_labels"]
            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
        else:
            # If no points are provide, pad with an empty point (with label -1)
            sam_point_coords = torch.zeros(B, 1, 2, device=device)
            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)

        # b) Handle mask prompts
        if mask_inputs is not None:
            # If mask_inputs is provided, downsize it into low-res mask input if needed
            # and feed it as a dense mask prompt into the SAM mask encoder
            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
                sam_mask_prompt = F.interpolate(
                    mask_inputs.float(),
                    size=self.sam_prompt_encoder.mask_input_size,
                    align_corners=False,
                    mode="bilinear",
                    antialias=True,  # use antialias for downsampling
                )
            else:
                sam_mask_prompt = mask_inputs
        else:
            # Otherwise, simply feed None (and SAM's prompt encoder will add
            # a learned `no_mask_embed` to indicate no mask input in this case).
            sam_mask_prompt = None

        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
            points=(sam_point_coords, sam_point_labels),
            boxes=None,
            masks=sam_mask_prompt,
        )
        low_res_multimasks, ious, sam_output_tokens, object_score_logits = self.sam_mask_decoder(
            image_embeddings=backbone_features,
            image_pe=self.sam_prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            repeat_image=False,  # the image is already batched
            high_res_features=high_res_features,
        )
        if self.pred_obj_scores:
            is_obj_appearing = object_score_logits > 0

            # Spatial memory mask is a *hard* choice between obj and no obj, consistent with actual mask prediction
            low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE)

        # convert masks from possibly bfloat16 (or float16) to float32
        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
        low_res_multimasks = low_res_multimasks.float()
        high_res_multimasks = F.interpolate(
            low_res_multimasks,
            size=(self.image_size, self.image_size),
            mode="bilinear",
            align_corners=False,
        )

        sam_output_token = sam_output_tokens[:, 0]
        if multimask_output:
            # take the best mask prediction (with the highest IoU estimation)
            best_iou_inds = torch.argmax(ious, dim=-1)
            batch_inds = torch.arange(B, device=device)
            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            if sam_output_tokens.size(1) > 1:
                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
        else:
            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks

        # Extract object pointer from the SAM output token (with occlusion handling)
        obj_ptr = self.obj_ptr_proj(sam_output_token)
        if self.pred_obj_scores:
            # Allow *soft* no obj ptr, unlike for masks
            if self.soft_no_obj_ptr:
                lambda_is_obj_appearing = object_score_logits.sigmoid()
            else:
                lambda_is_obj_appearing = is_obj_appearing.float()

            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_multimasks,
            high_res_multimasks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
        """Processes mask inputs directly as output, bypassing SAM encoder/decoder."""
        # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
        out_scale, out_bias = 20.0, -10.0  # sigmoid(-10.0)=4.5398e-05
        mask_inputs_float = mask_inputs.float()
        high_res_masks = mask_inputs_float * out_scale + out_bias
        low_res_masks = F.interpolate(
            high_res_masks,
            size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
            align_corners=False,
            mode="bilinear",
            antialias=True,  # use antialias for downsampling
        )
        # a dummy IoU prediction of all 1's under mask input
        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
        if not self.use_obj_ptrs_in_encoder:
            # all zeros as a dummy object pointer (of shape [B, C])
            obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device)
        else:
            # produce an object pointer using the SAM decoder from the mask input
            _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
                backbone_features=backbone_features,
                mask_inputs=self.mask_downsample(mask_inputs_float),
                high_res_features=high_res_features,
            )
        # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
        # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
        # on the object_scores from the SAM decoder.
        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
        is_obj_appearing = is_obj_appearing[..., None]
        lambda_is_obj_appearing = is_obj_appearing.float()
        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
        if self.pred_obj_scores:
            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_masks,
            high_res_masks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def forward_image(self, img_batch: torch.Tensor):
        """Processes image batch through encoder to extract multi-level features for SAM model."""
        backbone_out = self.image_encoder(img_batch)
        if self.use_high_res_features_in_sam:
            # precompute projected level 0 and level 1 features in SAM decoder
            # to avoid running it again on every SAM click
            backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(backbone_out["backbone_fpn"][0])
            backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(backbone_out["backbone_fpn"][1])
        return backbone_out

    def _prepare_backbone_features(self, backbone_out):
        """Prepares and flattens visual features from the image backbone output for further processing."""
        assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
        assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels

        feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
        vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]

        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
        # flatten NxCxHxW to HWxNxC
        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]

        return backbone_out, vision_feats, vision_pos_embeds, feat_sizes

    def _prepare_memory_conditioned_features(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
    ):
        """Prepares memory-conditioned features by fusing current frame's visual features with previous memories."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        device = current_vision_feats[-1].device
        # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
        # In this case, we skip the fusion with any memory.
        if self.num_maskmem == 0:  # Disable memory and skip fusion
            return current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
        num_obj_ptr_tokens = 0
        tpos_sign_mul = -1 if track_in_reverse else 1
        # Step 1: condition the visual features of the current frame on previous memories
        if not is_init_cond_frame:
            # Retrieve the memories encoded with the maskmem backbone
            to_cat_memory, to_cat_memory_pos_embed = [], []
            # Add conditioning frame's output first (all cond frames have t_pos=0 for
            # when getting temporal positional embedding below)
            assert len(output_dict["cond_frame_outputs"]) > 0
            # Select a maximum number of temporally closest cond frames for cross attention
            cond_outputs = output_dict["cond_frame_outputs"]
            selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
                frame_idx, cond_outputs, self.max_cond_frames_in_attn
            )
            t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
            # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
            # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
            # We also allow taking the memory frame non-consecutively (with r>1), in which case
            # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
            r = 1 if self.training else self.memory_temporal_stride_for_eval
            for t_pos in range(1, self.num_maskmem):
                t_rel = self.num_maskmem - t_pos  # how many frames before current frame
                if t_rel == 1:
                    # for t_rel == 1, we take the last frame (regardless of r)
                    prev_frame_idx = frame_idx + t_rel if track_in_reverse else frame_idx - t_rel
                elif not track_in_reverse:
                    # first find the nearest frame among every r-th frames before this frame
                    # for r=1, this would be (frame_idx - 2)
                    prev_frame_idx = ((frame_idx - 2) // r) * r
                    # then seek further among every r-th frames
                    prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
                else:
                    # first find the nearest frame among every r-th frames after this frame
                    # for r=1, this would be (frame_idx + 2)
                    prev_frame_idx = -(-(frame_idx + 2) // r) * r
                    # then seek further among every r-th frames
                    prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
                out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
                if out is None:
                    # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
                    # frames, we still attend to it as if it's a non-conditioning frame.
                    out = unselected_cond_outputs.get(prev_frame_idx, None)
                t_pos_and_prevs.append((t_pos, out))

            for t_pos, prev in t_pos_and_prevs:
                if prev is None:
                    continue  # skip padding frames
                # "maskmem_features" might have been offloaded to CPU in demo use cases,
                # so we load it back to inference device (it's a no-op if it's already on device).
                feats = prev["maskmem_features"].to(device=device, non_blocking=True)
                to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
                # Spatial positional encoding (it might have been offloaded to CPU in eval)
                maskmem_enc = prev["maskmem_pos_enc"][-1].to(device=device)
                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
                # Temporal positional encoding
                maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
                to_cat_memory_pos_embed.append(maskmem_enc)

            # Construct the list of past object pointers
            if self.use_obj_ptrs_in_encoder:
                max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
                # First add those object pointers from selected conditioning frames
                # (optionally, only include object pointers in the past during evaluation)
                if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
                    ptr_cond_outputs = {
                        t: out
                        for t, out in selected_cond_outputs.items()
                        if (t >= frame_idx if track_in_reverse else t <= frame_idx)
                    }
                else:
                    ptr_cond_outputs = selected_cond_outputs
                pos_and_ptrs = [
                    # Temporal pos encoding contains how far away each pointer is from current frame
                    (
                        (
                            (frame_idx - t) * tpos_sign_mul
                            if self.use_signed_tpos_enc_to_obj_ptrs
                            else abs(frame_idx - t)
                        ),
                        out["obj_ptr"],
                    )
                    for t, out in ptr_cond_outputs.items()
                ]
                # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
                for t_diff in range(1, max_obj_ptrs_in_encoder):
                    t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
                    if t < 0 or (num_frames is not None and t >= num_frames):
                        break
                    out = output_dict["non_cond_frame_outputs"].get(t, unselected_cond_outputs.get(t, None))
                    if out is not None:
                        pos_and_ptrs.append((t_diff, out["obj_ptr"]))
                # If we have at least one object pointer, add them to the across attention
                if pos_and_ptrs:
                    pos_list, ptrs_list = zip(*pos_and_ptrs)
                    # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
                    obj_ptrs = torch.stack(ptrs_list, dim=0)
                    # a temporal positional embedding based on how far each object pointer is from
                    # the current frame (sine embedding normalized by the max pointer num).
                    if self.add_tpos_enc_to_obj_ptrs:
                        t_diff_max = max_obj_ptrs_in_encoder - 1
                        tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
                        obj_pos = torch.tensor(pos_list, device=device)
                        obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
                        obj_pos = self.obj_ptr_tpos_proj(obj_pos)
                        obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
                    else:
                        obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
                    if self.mem_dim < C:
                        # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
                        obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
                        obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
                        obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
                    to_cat_memory.append(obj_ptrs)
                    to_cat_memory_pos_embed.append(obj_pos)
                    num_obj_ptr_tokens = obj_ptrs.shape[0]
                else:
                    num_obj_ptr_tokens = 0
        else:
            # for initial conditioning frames, encode them without using any previous memory
            if self.directly_add_no_mem_embed:
                # directly add no-mem embedding (instead of using the transformer encoder)
                pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
                pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
                return pix_feat_with_mem

            # Use a dummy token on the first frame (to avoid empty memory input to transformer encoder)
            to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
            to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]

        # Step 2: Concatenate the memories and forward through the transformer encoder
        memory = torch.cat(to_cat_memory, dim=0)
        memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)

        pix_feat_with_mem = self.memory_attention(
            curr=current_vision_feats,
            curr_pos=current_vision_pos_embeds,
            memory=memory,
            memory_pos=memory_pos_embed,
            num_obj_ptr_tokens=num_obj_ptr_tokens,
        )
        # reshape the output (HW)BC => BCHW
        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
        return pix_feat_with_mem

    def _encode_new_memory(
        self,
        current_vision_feats,
        feat_sizes,
        pred_masks_high_res,
        object_score_logits,
        is_mask_from_pts,
    ):
        """Encodes frame features and masks into a new memory representation for video segmentation."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        # top-level feature, (HW)BC => BCHW
        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
        if self.non_overlap_masks_for_mem_enc and not self.training:
            # optionally, apply non-overlapping constraints to the masks (it's applied
            # in the batch dimension and should only be used during eval, where all
            # the objects come from the same video under batch size 1).
            pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res)
        # scale the raw mask logits with a temperature before applying sigmoid
        binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
        if binarize and not self.training:
            mask_for_mem = (pred_masks_high_res > 0).float()
        else:
            # apply sigmoid on the raw mask logits to turn them into range (0, 1)
            mask_for_mem = torch.sigmoid(pred_masks_high_res)
        # apply scale and bias terms to the sigmoid probabilities
        if self.sigmoid_scale_for_mem_enc != 1.0:
            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
        if self.sigmoid_bias_for_mem_enc != 0.0:
            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
        maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True)  # sigmoid already applied
        maskmem_features = maskmem_out["vision_features"]
        maskmem_pos_enc = maskmem_out["vision_pos_enc"]
        # add a no-object embedding to the spatial memory to indicate that the frame
        # is predicted to be occluded (i.e. no object is appearing in the frame)
        if self.no_obj_embed_spatial is not None:
            is_obj_appearing = (object_score_logits > 0).float()
            maskmem_features += (1 - is_obj_appearing[..., None, None]) * self.no_obj_embed_spatial[
                ..., None, None
            ].expand(*maskmem_features.shape)

        return maskmem_features, maskmem_pos_enc

    def _track_step(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        point_inputs,
        mask_inputs,
        output_dict,
        num_frames,
        track_in_reverse,
        prev_sam_mask_logits,
    ):
        """Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
        if len(current_vision_feats) > 1:
            high_res_features = [
                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
            ]
        else:
            high_res_features = None
        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
            # When use_mask_input_as_output_without_sam=True, we directly output the mask input
            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
            sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
        else:
            # fused the visual feature with previous memory features in the memory bank
            pix_feat = self._prepare_memory_conditioned_features(
                frame_idx=frame_idx,
                is_init_cond_frame=is_init_cond_frame,
                current_vision_feats=current_vision_feats[-1:],
                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
                feat_sizes=feat_sizes[-1:],
                output_dict=output_dict,
                num_frames=num_frames,
                track_in_reverse=track_in_reverse,
            )
            # apply SAM-style segmentation head
            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
            # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
            if prev_sam_mask_logits is not None:
                assert point_inputs is not None and mask_inputs is None
                mask_inputs = prev_sam_mask_logits
            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
            sam_outputs = self._forward_sam_heads(
                backbone_features=pix_feat,
                point_inputs=point_inputs,
                mask_inputs=mask_inputs,
                high_res_features=high_res_features,
                multimask_output=multimask_output,
            )
        return current_out, sam_outputs, high_res_features, pix_feat

    def _encode_memory_in_output(
        self,
        current_vision_feats,
        feat_sizes,
        point_inputs,
        run_mem_encoder,
        high_res_masks,
        object_score_logits,
        current_out,
    ):
        """Finally run the memory encoder on the predicted mask to encode, it into a new memory feature (that can be
        used in future frames).
        """
        if run_mem_encoder and self.num_maskmem > 0:
            high_res_masks_for_mem_enc = high_res_masks
            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
                current_vision_feats=current_vision_feats,
                feat_sizes=feat_sizes,
                pred_masks_high_res=high_res_masks_for_mem_enc,
                object_score_logits=object_score_logits,
                is_mask_from_pts=(point_inputs is not None),
            )
            current_out["maskmem_features"] = maskmem_features
            current_out["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            current_out["maskmem_features"] = None
            current_out["maskmem_pos_enc"] = None

    def track_step(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        point_inputs,
        mask_inputs,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
        # to skip the memory encoder with `run_mem_encoder=False`. For example,
        # in demo we might call `track_step` multiple times for each user click,
        # and only encode the memory when the user finalizes their clicks. And in ablation
        # settings like SAM training on static images, we don't need the memory encoder.
        run_mem_encoder=True,
        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
        prev_sam_mask_logits=None,
    ):
        """Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
        current_out, sam_outputs, _, _ = self._track_step(
            frame_idx,
            is_init_cond_frame,
            current_vision_feats,
            current_vision_pos_embeds,
            feat_sizes,
            point_inputs,
            mask_inputs,
            output_dict,
            num_frames,
            track_in_reverse,
            prev_sam_mask_logits,
        )
        _, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = sam_outputs

        current_out["pred_masks"] = low_res_masks
        current_out["pred_masks_high_res"] = high_res_masks
        current_out["obj_ptr"] = obj_ptr
        if not self.training:
            # Only add this in inference (to avoid unused param in activation checkpointing;
            # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
            current_out["object_score_logits"] = object_score_logits

        # Run memory encoder on the predicted mask to encode it into a new memory feature (for use in future frames)
        self._encode_memory_in_output(
            current_vision_feats,
            feat_sizes,
            point_inputs,
            run_mem_encoder,
            high_res_masks,
            object_score_logits,
            current_out,
        )

        return current_out

    def _use_multimask(self, is_init_cond_frame, point_inputs):
        """Determines whether to use multiple mask outputs in the SAM head based on configuration and inputs."""
        num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
        return (
            self.multimask_output_in_sam
            and (is_init_cond_frame or self.multimask_output_for_tracking)
            and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
        )

    @staticmethod
    def _apply_non_overlapping_constraints(pred_masks):
        """Applies non-overlapping constraints to masks, keeping the highest scoring object per location."""
        batch_size = pred_masks.size(0)
        if batch_size == 1:
            return pred_masks

        device = pred_masks.device
        # "max_obj_inds": object index of the object with the highest score at each location
        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
        # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
        keep = max_obj_inds == batch_obj_inds
        # suppress overlapping regions' scores below -10.0 so that the foreground regions
        # don't overlap (here sigmoid(-10.0)=4.5398e-05)
        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
        return pred_masks

    def set_binarize(self, binarize=False):
        """Set binarize for VideoPredictor."""
        self.binarize_mask_from_pts_for_mem_enc = binarize

    def set_imgsz(self, imgsz):
        """
        Set image size to make model compatible with different image sizes.

        Args:
            imgsz (Tuple[int, int]): The size of the input image.
        """
        self.image_size = imgsz[0]
        self.sam_prompt_encoder.input_image_size = imgsz
        self.sam_prompt_encoder.image_embedding_size = [x // 16 for x in imgsz]  # fixed ViT patch size of 16