Spaces:
Running
Running
File size: 52,751 Bytes
1999a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import trunc_normal_
from ultralytics.nn.modules import MLP
from .blocks import SAM2TwoWayTransformer
from .decoders import MaskDecoder, SAM2MaskDecoder
from .encoders import ImageEncoderViT, PromptEncoder
from .utils import get_1d_sine_pe, select_closest_cond_frames
# a large negative value as a placeholder score for missing objects
NO_OBJ_SCORE = -1024.0
class SAMModel(nn.Module):
"""
Segment Anything Model (SAM) for object segmentation tasks.
This class combines image encoders, prompt encoders, and mask decoders to predict object masks from images
and input prompts.
Attributes:
mask_threshold (float): Threshold value for mask prediction.
image_encoder (ImageEncoderViT): Backbone for encoding images into embeddings.
prompt_encoder (PromptEncoder): Encoder for various types of input prompts.
mask_decoder (MaskDecoder): Predicts object masks from image and prompt embeddings.
Methods:
__init__: Initializes the SAMModel with encoders, decoder, and normalization parameters.
Examples:
>>> image_encoder = ImageEncoderViT(...)
>>> prompt_encoder = PromptEncoder(...)
>>> mask_decoder = MaskDecoder(...)
>>> sam_model = SAMModel(image_encoder, prompt_encoder, mask_decoder)
>>> # Further usage depends on SAMPredictor class
Notes:
All forward() operations are implemented in the SAMPredictor class.
"""
mask_threshold: float = 0.0
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = (123.675, 116.28, 103.53),
pixel_std: List[float] = (58.395, 57.12, 57.375),
) -> None:
"""
Initialize the SAMModel class to predict object masks from an image and input prompts.
Args:
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
pixel_mean (List[float]): Mean values for normalizing pixels in the input image.
pixel_std (List[float]): Std values for normalizing pixels in the input image.
Examples:
>>> image_encoder = ImageEncoderViT(...)
>>> prompt_encoder = PromptEncoder(...)
>>> mask_decoder = MaskDecoder(...)
>>> sam_model = SAMModel(image_encoder, prompt_encoder, mask_decoder)
>>> # Further usage depends on SAMPredictor class
Notes:
All forward() operations moved to SAMPredictor.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
def set_imgsz(self, imgsz):
"""
Set image size to make model compatible with different image sizes.
Args:
imgsz (Tuple[int, int]): The size of the input image.
"""
if hasattr(self.image_encoder, "set_imgsz"):
self.image_encoder.set_imgsz(imgsz)
self.prompt_encoder.input_image_size = imgsz
self.prompt_encoder.image_embedding_size = [x // 16 for x in imgsz] # 16 is fixed as patch size of ViT model
self.image_encoder.img_size = imgsz[0]
class SAM2Model(torch.nn.Module):
"""
SAM2Model class for Segment Anything Model 2 with memory-based video object segmentation capabilities.
This class extends the functionality of SAM to handle video sequences, incorporating memory mechanisms
for temporal consistency and efficient tracking of objects across frames.
Attributes:
mask_threshold (float): Threshold value for mask prediction.
image_encoder (ImageEncoderViT): Visual encoder for extracting image features.
memory_attention (nn.Module): Module for attending to memory features.
memory_encoder (nn.Module): Encoder for generating memory representations.
num_maskmem (int): Number of accessible memory frames.
image_size (int): Size of input images.
backbone_stride (int): Stride of the backbone network output.
sam_prompt_embed_dim (int): Dimension of SAM prompt embeddings.
sam_image_embedding_size (int): Size of SAM image embeddings.
sam_prompt_encoder (PromptEncoder): Encoder for processing input prompts.
sam_mask_decoder (SAM2MaskDecoder): Decoder for generating object masks.
obj_ptr_proj (nn.Module): Projection layer for object pointers.
obj_ptr_tpos_proj (nn.Module): Projection for temporal positional encoding in object pointers.
Methods:
forward_image: Processes image batch through encoder to extract multi-level features.
track_step: Performs a single tracking step, updating object masks and memory features.
Examples:
>>> model = SAM2Model(image_encoder, memory_attention, memory_encoder)
>>> image_batch = torch.rand(1, 3, 512, 512)
>>> features = model.forward_image(image_batch)
>>> track_results = model.track_step(0, True, features, None, None, None, {})
"""
mask_threshold: float = 0.0
def __init__(
self,
image_encoder,
memory_attention,
memory_encoder,
num_maskmem=7,
image_size=512,
backbone_stride=16,
sigmoid_scale_for_mem_enc=1.0,
sigmoid_bias_for_mem_enc=0.0,
binarize_mask_from_pts_for_mem_enc=False,
use_mask_input_as_output_without_sam=False,
max_cond_frames_in_attn=-1,
directly_add_no_mem_embed=False,
use_high_res_features_in_sam=False,
multimask_output_in_sam=False,
multimask_min_pt_num=1,
multimask_max_pt_num=1,
multimask_output_for_tracking=False,
use_multimask_token_for_obj_ptr: bool = False,
iou_prediction_use_sigmoid=False,
memory_temporal_stride_for_eval=1,
non_overlap_masks_for_mem_enc=False,
use_obj_ptrs_in_encoder=False,
max_obj_ptrs_in_encoder=16,
add_tpos_enc_to_obj_ptrs=True,
proj_tpos_enc_in_obj_ptrs=False,
use_signed_tpos_enc_to_obj_ptrs=False,
only_obj_ptrs_in_the_past_for_eval=False,
pred_obj_scores: bool = False,
pred_obj_scores_mlp: bool = False,
fixed_no_obj_ptr: bool = False,
soft_no_obj_ptr: bool = False,
use_mlp_for_obj_ptr_proj: bool = False,
no_obj_embed_spatial: bool = False,
sam_mask_decoder_extra_args=None,
compile_image_encoder: bool = False,
):
"""
Initializes the SAM2Model for video object segmentation with memory-based tracking.
Args:
image_encoder (nn.Module): Visual encoder for extracting image features.
memory_attention (nn.Module): Module for attending to memory features.
memory_encoder (nn.Module): Encoder for generating memory representations.
num_maskmem (int): Number of accessible memory frames. Default is 7 (1 input frame + 6 previous frames).
image_size (int): Size of input images.
backbone_stride (int): Stride of the image backbone output.
sigmoid_scale_for_mem_enc (float): Scale factor for mask sigmoid probability.
sigmoid_bias_for_mem_enc (float): Bias factor for mask sigmoid probability.
binarize_mask_from_pts_for_mem_enc (bool): Whether to binarize sigmoid mask logits on interacted frames
with clicks during evaluation.
use_mask_input_as_output_without_sam (bool): Whether to directly output the input mask without using SAM
prompt encoder and mask decoder on frames with mask input.
max_cond_frames_in_attn (int): Maximum number of conditioning frames to participate in memory attention.
-1 means no limit.
directly_add_no_mem_embed (bool): Whether to directly add no-memory embedding to image feature on the
first frame.
use_high_res_features_in_sam (bool): Whether to use high-resolution feature maps in the SAM mask decoder.
multimask_output_in_sam (bool): Whether to output multiple (3) masks for the first click on initial
conditioning frames.
multimask_min_pt_num (int): Minimum number of clicks to use multimask output in SAM.
multimask_max_pt_num (int): Maximum number of clicks to use multimask output in SAM.
multimask_output_for_tracking (bool): Whether to use multimask output for tracking.
use_multimask_token_for_obj_ptr (bool): Whether to use multimask tokens for object pointers.
iou_prediction_use_sigmoid (bool): Whether to use sigmoid to restrict IoU prediction to [0-1].
memory_temporal_stride_for_eval (int): Memory bank's temporal stride during evaluation.
non_overlap_masks_for_mem_enc (bool): Whether to apply non-overlapping constraints on object masks in
memory encoder during evaluation.
use_obj_ptrs_in_encoder (bool): Whether to cross-attend to object pointers from other frames in the encoder.
max_obj_ptrs_in_encoder (int): Maximum number of object pointers from other frames in encoder
cross-attention.
add_tpos_enc_to_obj_ptrs (bool): Whether to add temporal positional encoding to object pointers in
the encoder.
proj_tpos_enc_in_obj_ptrs (bool): Whether to add an extra linear projection layer for temporal positional
encoding in object pointers.
use_signed_tpos_enc_to_obj_ptrs (bool): whether to use signed distance (instead of unsigned absolute distance)
in the temporal positional encoding in the object pointers, only relevant when both `use_obj_ptrs_in_encoder=True`
and `add_tpos_enc_to_obj_ptrs=True`.
only_obj_ptrs_in_the_past_for_eval (bool): Whether to only attend to object pointers in the past
during evaluation.
pred_obj_scores (bool): Whether to predict if there is an object in the frame.
pred_obj_scores_mlp (bool): Whether to use an MLP to predict object scores.
fixed_no_obj_ptr (bool): Whether to have a fixed no-object pointer when there is no object present.
soft_no_obj_ptr (bool): Whether to mix in no-object pointer softly for easier recovery and error mitigation.
use_mlp_for_obj_ptr_proj (bool): Whether to use MLP for object pointer projection.
no_obj_embed_spatial (bool): Whether add no obj embedding to spatial frames.
sam_mask_decoder_extra_args (Dict | None): Extra arguments for constructing the SAM mask decoder.
compile_image_encoder (bool): Whether to compile the image encoder for faster inference.
Examples:
>>> image_encoder = ImageEncoderViT(...)
>>> memory_attention = SAM2TwoWayTransformer(...)
>>> memory_encoder = nn.Sequential(...)
>>> model = SAM2Model(image_encoder, memory_attention, memory_encoder)
>>> image_batch = torch.rand(1, 3, 512, 512)
>>> features = model.forward_image(image_batch)
>>> track_results = model.track_step(0, True, features, None, None, None, {})
"""
super().__init__()
# Part 1: the image backbone
self.image_encoder = image_encoder
# Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
self.use_high_res_features_in_sam = use_high_res_features_in_sam
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
if use_obj_ptrs_in_encoder:
# A conv layer to downsample the mask prompt to stride 4 (the same stride as
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
# so that it can be fed into the SAM mask decoder to generate a pointer.
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
if proj_tpos_enc_in_obj_ptrs:
assert add_tpos_enc_to_obj_ptrs # these options need to be used together
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
# Part 2: memory attention to condition current frame's visual features
# with memories (and obj ptrs) from past frames
self.memory_attention = memory_attention
self.hidden_dim = memory_attention.d_model
# Part 3: memory encoder for the previous frame's outputs
self.memory_encoder = memory_encoder
self.mem_dim = self.hidden_dim
if hasattr(self.memory_encoder, "out_proj") and hasattr(self.memory_encoder.out_proj, "weight"):
# if there is compression of memories along channel dim
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
self.num_maskmem = num_maskmem # Number of memories accessible
# Temporal encoding of the memories
self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim))
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
# a single token to indicate no memory embedding from previous frames
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
trunc_normal_(self.no_mem_embed, std=0.02)
trunc_normal_(self.no_mem_pos_enc, std=0.02)
self.directly_add_no_mem_embed = directly_add_no_mem_embed
# Apply sigmoid to the output raw mask logits (to turn them from
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
# On frames with mask input, whether to directly output the input mask without
# using a SAM prompt encoder + mask decoder
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
self.multimask_output_in_sam = multimask_output_in_sam
self.multimask_min_pt_num = multimask_min_pt_num
self.multimask_max_pt_num = multimask_max_pt_num
self.multimask_output_for_tracking = multimask_output_for_tracking
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
# Part 4: SAM-style prompt encoder (for both mask and point inputs)
# and SAM-style mask decoder for the final mask output
self.image_size = image_size
self.backbone_stride = backbone_stride
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
self.pred_obj_scores = pred_obj_scores
self.pred_obj_scores_mlp = pred_obj_scores_mlp
self.fixed_no_obj_ptr = fixed_no_obj_ptr
self.soft_no_obj_ptr = soft_no_obj_ptr
if self.fixed_no_obj_ptr:
assert self.pred_obj_scores
assert self.use_obj_ptrs_in_encoder
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
trunc_normal_(self.no_obj_ptr, std=0.02)
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
self.no_obj_embed_spatial = None
if no_obj_embed_spatial:
self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
trunc_normal_(self.no_obj_embed_spatial, std=0.02)
self._build_sam_heads()
self.max_cond_frames_in_attn = max_cond_frames_in_attn
# Model compilation
if compile_image_encoder:
# Compile the forward function (not the full module) to allow loading checkpoints.
print("Image encoder compilation is enabled. First forward pass will be slow.")
self.image_encoder.forward = torch.compile(
self.image_encoder.forward,
mode="max-autotune",
fullgraph=True,
dynamic=False,
)
@property
def device(self):
"""Returns the device on which the model's parameters are stored."""
return next(self.parameters()).device
def forward(self, *args, **kwargs):
"""Processes image and prompt inputs to generate object masks and scores in video sequences."""
raise NotImplementedError(
"Please use the corresponding methods in SAM2VideoPredictor for inference."
"See notebooks/video_predictor_example.ipynb for an example."
)
def _build_sam_heads(self):
"""Builds SAM-style prompt encoder and mask decoder for image segmentation tasks."""
self.sam_prompt_embed_dim = self.hidden_dim
self.sam_image_embedding_size = self.image_size // self.backbone_stride
# Build PromptEncoder and MaskDecoder from SAM (hyperparameters like `mask_in_chans=16` are from SAM code)
self.sam_prompt_encoder = PromptEncoder(
embed_dim=self.sam_prompt_embed_dim,
image_embedding_size=(
self.sam_image_embedding_size,
self.sam_image_embedding_size,
),
input_image_size=(self.image_size, self.image_size),
mask_in_chans=16,
)
self.sam_mask_decoder = SAM2MaskDecoder(
num_multimask_outputs=3,
transformer=SAM2TwoWayTransformer(
depth=2,
embedding_dim=self.sam_prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=self.sam_prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
use_high_res_features=self.use_high_res_features_in_sam,
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
pred_obj_scores=self.pred_obj_scores,
pred_obj_scores_mlp=self.pred_obj_scores_mlp,
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
**(self.sam_mask_decoder_extra_args or {}),
)
if self.use_obj_ptrs_in_encoder:
# a linear projection on SAM output tokens to turn them into object pointers
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
if self.use_mlp_for_obj_ptr_proj:
self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
else:
self.obj_ptr_proj = torch.nn.Identity()
if self.proj_tpos_enc_in_obj_ptrs:
# a linear projection on temporal positional encoding in object pointers to
# avoid potential interference with spatial positional encoding
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
else:
self.obj_ptr_tpos_proj = torch.nn.Identity()
def _forward_sam_heads(
self,
backbone_features,
point_inputs=None,
mask_inputs=None,
high_res_features=None,
multimask_output=False,
):
"""
Forward pass through SAM prompt encoders and mask heads.
This method processes image features and optional point/mask inputs to generate object masks and scores.
Args:
backbone_features (torch.Tensor): Image features with shape (B, C, H, W).
point_inputs (Dict[str, torch.Tensor] | None): Dictionary containing point prompts.
'point_coords': Tensor of shape (B, P, 2) with float32 dtype, containing absolute
pixel-unit coordinates in (x, y) format for P input points.
'point_labels': Tensor of shape (B, P) with int32 dtype, where 1 means positive clicks,
0 means negative clicks, and -1 means padding.
mask_inputs (torch.Tensor | None): Mask of shape (B, 1, H*16, W*16), float or bool, with the
same spatial size as the image.
high_res_features (List[torch.Tensor] | None): List of two feature maps with shapes
(B, C, 4*H, 4*W) and (B, C, 2*H, 2*W) respectively, used as high-resolution feature maps
for SAM decoder.
multimask_output (bool): If True, output 3 candidate masks and their IoU estimates; if False,
output only 1 mask and its IoU estimate.
Returns:
(Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
low_res_multimasks: Tensor of shape (B, M, H*4, W*4) with SAM output mask logits.
high_res_multimasks: Tensor of shape (B, M, H*16, W*16) with upsampled mask logits.
ious: Tensor of shape (B, M) with estimated IoU for each output mask.
low_res_masks: Tensor of shape (B, 1, H*4, W*4) with the best low-resolution mask.
high_res_masks: Tensor of shape (B, 1, H*16, W*16) with the best high-resolution mask.
obj_ptr: Tensor of shape (B, C) with object pointer vector for the output mask.
object_score_logits: Tensor of shape (B) with object score logits.
Where M is 3 if multimask_output=True, and 1 if multimask_output=False.
Examples:
>>> backbone_features = torch.rand(1, 256, 32, 32)
>>> point_inputs = {"point_coords": torch.rand(1, 2, 2), "point_labels": torch.tensor([[1, 0]])}
>>> mask_inputs = torch.rand(1, 1, 512, 512)
>>> results = model._forward_sam_heads(backbone_features, point_inputs, mask_inputs)
>>> (
... low_res_multimasks,
... high_res_multimasks,
... ious,
... low_res_masks,
... high_res_masks,
... obj_ptr,
... object_score_logits,
... ) = results
"""
B = backbone_features.size(0)
device = backbone_features.device
assert backbone_features.size(1) == self.sam_prompt_embed_dim
assert backbone_features.size(2) == self.sam_image_embedding_size
assert backbone_features.size(3) == self.sam_image_embedding_size
# a) Handle point prompts
if point_inputs is not None:
sam_point_coords = point_inputs["point_coords"]
sam_point_labels = point_inputs["point_labels"]
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
else:
# If no points are provide, pad with an empty point (with label -1)
sam_point_coords = torch.zeros(B, 1, 2, device=device)
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
# b) Handle mask prompts
if mask_inputs is not None:
# If mask_inputs is provided, downsize it into low-res mask input if needed
# and feed it as a dense mask prompt into the SAM mask encoder
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
sam_mask_prompt = F.interpolate(
mask_inputs.float(),
size=self.sam_prompt_encoder.mask_input_size,
align_corners=False,
mode="bilinear",
antialias=True, # use antialias for downsampling
)
else:
sam_mask_prompt = mask_inputs
else:
# Otherwise, simply feed None (and SAM's prompt encoder will add
# a learned `no_mask_embed` to indicate no mask input in this case).
sam_mask_prompt = None
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
points=(sam_point_coords, sam_point_labels),
boxes=None,
masks=sam_mask_prompt,
)
low_res_multimasks, ious, sam_output_tokens, object_score_logits = self.sam_mask_decoder(
image_embeddings=backbone_features,
image_pe=self.sam_prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
repeat_image=False, # the image is already batched
high_res_features=high_res_features,
)
if self.pred_obj_scores:
is_obj_appearing = object_score_logits > 0
# Spatial memory mask is a *hard* choice between obj and no obj, consistent with actual mask prediction
low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE)
# convert masks from possibly bfloat16 (or float16) to float32
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
low_res_multimasks = low_res_multimasks.float()
high_res_multimasks = F.interpolate(
low_res_multimasks,
size=(self.image_size, self.image_size),
mode="bilinear",
align_corners=False,
)
sam_output_token = sam_output_tokens[:, 0]
if multimask_output:
# take the best mask prediction (with the highest IoU estimation)
best_iou_inds = torch.argmax(ious, dim=-1)
batch_inds = torch.arange(B, device=device)
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
if sam_output_tokens.size(1) > 1:
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
else:
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
# Extract object pointer from the SAM output token (with occlusion handling)
obj_ptr = self.obj_ptr_proj(sam_output_token)
if self.pred_obj_scores:
# Allow *soft* no obj ptr, unlike for masks
if self.soft_no_obj_ptr:
lambda_is_obj_appearing = object_score_logits.sigmoid()
else:
lambda_is_obj_appearing = is_obj_appearing.float()
if self.fixed_no_obj_ptr:
obj_ptr = lambda_is_obj_appearing * obj_ptr
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
return (
low_res_multimasks,
high_res_multimasks,
ious,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
)
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
"""Processes mask inputs directly as output, bypassing SAM encoder/decoder."""
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
mask_inputs_float = mask_inputs.float()
high_res_masks = mask_inputs_float * out_scale + out_bias
low_res_masks = F.interpolate(
high_res_masks,
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
align_corners=False,
mode="bilinear",
antialias=True, # use antialias for downsampling
)
# a dummy IoU prediction of all 1's under mask input
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
if not self.use_obj_ptrs_in_encoder:
# all zeros as a dummy object pointer (of shape [B, C])
obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device)
else:
# produce an object pointer using the SAM decoder from the mask input
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
backbone_features=backbone_features,
mask_inputs=self.mask_downsample(mask_inputs_float),
high_res_features=high_res_features,
)
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
# on the object_scores from the SAM decoder.
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
is_obj_appearing = is_obj_appearing[..., None]
lambda_is_obj_appearing = is_obj_appearing.float()
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
if self.pred_obj_scores:
if self.fixed_no_obj_ptr:
obj_ptr = lambda_is_obj_appearing * obj_ptr
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
return (
low_res_masks,
high_res_masks,
ious,
low_res_masks,
high_res_masks,
obj_ptr,
object_score_logits,
)
def forward_image(self, img_batch: torch.Tensor):
"""Processes image batch through encoder to extract multi-level features for SAM model."""
backbone_out = self.image_encoder(img_batch)
if self.use_high_res_features_in_sam:
# precompute projected level 0 and level 1 features in SAM decoder
# to avoid running it again on every SAM click
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(backbone_out["backbone_fpn"][0])
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(backbone_out["backbone_fpn"][1])
return backbone_out
def _prepare_backbone_features(self, backbone_out):
"""Prepares and flattens visual features from the image backbone output for further processing."""
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
# flatten NxCxHxW to HWxNxC
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
def _prepare_memory_conditioned_features(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
output_dict,
num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage)
):
"""Prepares memory-conditioned features by fusing current frame's visual features with previous memories."""
B = current_vision_feats[-1].size(1) # batch size on this frame
C = self.hidden_dim
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
device = current_vision_feats[-1].device
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
# In this case, we skip the fusion with any memory.
if self.num_maskmem == 0: # Disable memory and skip fusion
return current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
num_obj_ptr_tokens = 0
tpos_sign_mul = -1 if track_in_reverse else 1
# Step 1: condition the visual features of the current frame on previous memories
if not is_init_cond_frame:
# Retrieve the memories encoded with the maskmem backbone
to_cat_memory, to_cat_memory_pos_embed = [], []
# Add conditioning frame's output first (all cond frames have t_pos=0 for
# when getting temporal positional embedding below)
assert len(output_dict["cond_frame_outputs"]) > 0
# Select a maximum number of temporally closest cond frames for cross attention
cond_outputs = output_dict["cond_frame_outputs"]
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
frame_idx, cond_outputs, self.max_cond_frames_in_attn
)
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
# We also allow taking the memory frame non-consecutively (with r>1), in which case
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
r = 1 if self.training else self.memory_temporal_stride_for_eval
for t_pos in range(1, self.num_maskmem):
t_rel = self.num_maskmem - t_pos # how many frames before current frame
if t_rel == 1:
# for t_rel == 1, we take the last frame (regardless of r)
prev_frame_idx = frame_idx + t_rel if track_in_reverse else frame_idx - t_rel
elif not track_in_reverse:
# first find the nearest frame among every r-th frames before this frame
# for r=1, this would be (frame_idx - 2)
prev_frame_idx = ((frame_idx - 2) // r) * r
# then seek further among every r-th frames
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
else:
# first find the nearest frame among every r-th frames after this frame
# for r=1, this would be (frame_idx + 2)
prev_frame_idx = -(-(frame_idx + 2) // r) * r
# then seek further among every r-th frames
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
if out is None:
# If an unselected conditioning frame is among the last (self.num_maskmem - 1)
# frames, we still attend to it as if it's a non-conditioning frame.
out = unselected_cond_outputs.get(prev_frame_idx, None)
t_pos_and_prevs.append((t_pos, out))
for t_pos, prev in t_pos_and_prevs:
if prev is None:
continue # skip padding frames
# "maskmem_features" might have been offloaded to CPU in demo use cases,
# so we load it back to inference device (it's a no-op if it's already on device).
feats = prev["maskmem_features"].to(device=device, non_blocking=True)
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
# Spatial positional encoding (it might have been offloaded to CPU in eval)
maskmem_enc = prev["maskmem_pos_enc"][-1].to(device=device)
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
# Temporal positional encoding
maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
to_cat_memory_pos_embed.append(maskmem_enc)
# Construct the list of past object pointers
if self.use_obj_ptrs_in_encoder:
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
# First add those object pointers from selected conditioning frames
# (optionally, only include object pointers in the past during evaluation)
if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
ptr_cond_outputs = {
t: out
for t, out in selected_cond_outputs.items()
if (t >= frame_idx if track_in_reverse else t <= frame_idx)
}
else:
ptr_cond_outputs = selected_cond_outputs
pos_and_ptrs = [
# Temporal pos encoding contains how far away each pointer is from current frame
(
(
(frame_idx - t) * tpos_sign_mul
if self.use_signed_tpos_enc_to_obj_ptrs
else abs(frame_idx - t)
),
out["obj_ptr"],
)
for t, out in ptr_cond_outputs.items()
]
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
for t_diff in range(1, max_obj_ptrs_in_encoder):
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
if t < 0 or (num_frames is not None and t >= num_frames):
break
out = output_dict["non_cond_frame_outputs"].get(t, unselected_cond_outputs.get(t, None))
if out is not None:
pos_and_ptrs.append((t_diff, out["obj_ptr"]))
# If we have at least one object pointer, add them to the across attention
if pos_and_ptrs:
pos_list, ptrs_list = zip(*pos_and_ptrs)
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
obj_ptrs = torch.stack(ptrs_list, dim=0)
# a temporal positional embedding based on how far each object pointer is from
# the current frame (sine embedding normalized by the max pointer num).
if self.add_tpos_enc_to_obj_ptrs:
t_diff_max = max_obj_ptrs_in_encoder - 1
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
obj_pos = torch.tensor(pos_list, device=device)
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
obj_pos = self.obj_ptr_tpos_proj(obj_pos)
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
else:
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
if self.mem_dim < C:
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
to_cat_memory.append(obj_ptrs)
to_cat_memory_pos_embed.append(obj_pos)
num_obj_ptr_tokens = obj_ptrs.shape[0]
else:
num_obj_ptr_tokens = 0
else:
# for initial conditioning frames, encode them without using any previous memory
if self.directly_add_no_mem_embed:
# directly add no-mem embedding (instead of using the transformer encoder)
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
return pix_feat_with_mem
# Use a dummy token on the first frame (to avoid empty memory input to transformer encoder)
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
# Step 2: Concatenate the memories and forward through the transformer encoder
memory = torch.cat(to_cat_memory, dim=0)
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
pix_feat_with_mem = self.memory_attention(
curr=current_vision_feats,
curr_pos=current_vision_pos_embeds,
memory=memory,
memory_pos=memory_pos_embed,
num_obj_ptr_tokens=num_obj_ptr_tokens,
)
# reshape the output (HW)BC => BCHW
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
return pix_feat_with_mem
def _encode_new_memory(
self,
current_vision_feats,
feat_sizes,
pred_masks_high_res,
object_score_logits,
is_mask_from_pts,
):
"""Encodes frame features and masks into a new memory representation for video segmentation."""
B = current_vision_feats[-1].size(1) # batch size on this frame
C = self.hidden_dim
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
# top-level feature, (HW)BC => BCHW
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
if self.non_overlap_masks_for_mem_enc and not self.training:
# optionally, apply non-overlapping constraints to the masks (it's applied
# in the batch dimension and should only be used during eval, where all
# the objects come from the same video under batch size 1).
pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res)
# scale the raw mask logits with a temperature before applying sigmoid
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
if binarize and not self.training:
mask_for_mem = (pred_masks_high_res > 0).float()
else:
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
mask_for_mem = torch.sigmoid(pred_masks_high_res)
# apply scale and bias terms to the sigmoid probabilities
if self.sigmoid_scale_for_mem_enc != 1.0:
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
if self.sigmoid_bias_for_mem_enc != 0.0:
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True) # sigmoid already applied
maskmem_features = maskmem_out["vision_features"]
maskmem_pos_enc = maskmem_out["vision_pos_enc"]
# add a no-object embedding to the spatial memory to indicate that the frame
# is predicted to be occluded (i.e. no object is appearing in the frame)
if self.no_obj_embed_spatial is not None:
is_obj_appearing = (object_score_logits > 0).float()
maskmem_features += (1 - is_obj_appearing[..., None, None]) * self.no_obj_embed_spatial[
..., None, None
].expand(*maskmem_features.shape)
return maskmem_features, maskmem_pos_enc
def _track_step(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse,
prev_sam_mask_logits,
):
"""Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
if len(current_vision_feats) > 1:
high_res_features = [
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
]
else:
high_res_features = None
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
else:
# fused the visual feature with previous memory features in the memory bank
pix_feat = self._prepare_memory_conditioned_features(
frame_idx=frame_idx,
is_init_cond_frame=is_init_cond_frame,
current_vision_feats=current_vision_feats[-1:],
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
feat_sizes=feat_sizes[-1:],
output_dict=output_dict,
num_frames=num_frames,
track_in_reverse=track_in_reverse,
)
# apply SAM-style segmentation head
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
if prev_sam_mask_logits is not None:
assert point_inputs is not None and mask_inputs is None
mask_inputs = prev_sam_mask_logits
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
sam_outputs = self._forward_sam_heads(
backbone_features=pix_feat,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
high_res_features=high_res_features,
multimask_output=multimask_output,
)
return current_out, sam_outputs, high_res_features, pix_feat
def _encode_memory_in_output(
self,
current_vision_feats,
feat_sizes,
point_inputs,
run_mem_encoder,
high_res_masks,
object_score_logits,
current_out,
):
"""Finally run the memory encoder on the predicted mask to encode, it into a new memory feature (that can be
used in future frames).
"""
if run_mem_encoder and self.num_maskmem > 0:
high_res_masks_for_mem_enc = high_res_masks
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
current_vision_feats=current_vision_feats,
feat_sizes=feat_sizes,
pred_masks_high_res=high_res_masks_for_mem_enc,
object_score_logits=object_score_logits,
is_mask_from_pts=(point_inputs is not None),
)
current_out["maskmem_features"] = maskmem_features
current_out["maskmem_pos_enc"] = maskmem_pos_enc
else:
current_out["maskmem_features"] = None
current_out["maskmem_pos_enc"] = None
def track_step(
self,
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse=False, # tracking in reverse time order (for demo usage)
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
# to skip the memory encoder with `run_mem_encoder=False`. For example,
# in demo we might call `track_step` multiple times for each user click,
# and only encode the memory when the user finalizes their clicks. And in ablation
# settings like SAM training on static images, we don't need the memory encoder.
run_mem_encoder=True,
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
prev_sam_mask_logits=None,
):
"""Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
current_out, sam_outputs, _, _ = self._track_step(
frame_idx,
is_init_cond_frame,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
point_inputs,
mask_inputs,
output_dict,
num_frames,
track_in_reverse,
prev_sam_mask_logits,
)
_, _, _, low_res_masks, high_res_masks, obj_ptr, object_score_logits = sam_outputs
current_out["pred_masks"] = low_res_masks
current_out["pred_masks_high_res"] = high_res_masks
current_out["obj_ptr"] = obj_ptr
if not self.training:
# Only add this in inference (to avoid unused param in activation checkpointing;
# it's mainly used in the demo to encode spatial memories w/ consolidated masks)
current_out["object_score_logits"] = object_score_logits
# Run memory encoder on the predicted mask to encode it into a new memory feature (for use in future frames)
self._encode_memory_in_output(
current_vision_feats,
feat_sizes,
point_inputs,
run_mem_encoder,
high_res_masks,
object_score_logits,
current_out,
)
return current_out
def _use_multimask(self, is_init_cond_frame, point_inputs):
"""Determines whether to use multiple mask outputs in the SAM head based on configuration and inputs."""
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
return (
self.multimask_output_in_sam
and (is_init_cond_frame or self.multimask_output_for_tracking)
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
)
@staticmethod
def _apply_non_overlapping_constraints(pred_masks):
"""Applies non-overlapping constraints to masks, keeping the highest scoring object per location."""
batch_size = pred_masks.size(0)
if batch_size == 1:
return pred_masks
device = pred_masks.device
# "max_obj_inds": object index of the object with the highest score at each location
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
keep = max_obj_inds == batch_obj_inds
# suppress overlapping regions' scores below -10.0 so that the foreground regions
# don't overlap (here sigmoid(-10.0)=4.5398e-05)
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
return pred_masks
def set_binarize(self, binarize=False):
"""Set binarize for VideoPredictor."""
self.binarize_mask_from_pts_for_mem_enc = binarize
def set_imgsz(self, imgsz):
"""
Set image size to make model compatible with different image sizes.
Args:
imgsz (Tuple[int, int]): The size of the input image.
"""
self.image_size = imgsz[0]
self.sam_prompt_encoder.input_image_size = imgsz
self.sam_prompt_encoder.image_embedding_size = [x // 16 for x in imgsz] # fixed ViT patch size of 16
|