Spaces:
Running
Running
File size: 34,852 Bytes
1999a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from typing import List, Optional, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import LayerNorm2d
from .blocks import (
Block,
CXBlock,
Fuser,
MaskDownSampler,
MultiScaleBlock,
PatchEmbed,
PositionEmbeddingRandom,
PositionEmbeddingSine,
)
class ImageEncoderViT(nn.Module):
"""
An image encoder using Vision Transformer (ViT) architecture for encoding images into a compact latent space.
This class processes images by splitting them into patches, applying transformer blocks, and generating a final
encoded representation through a neck module.
Attributes:
img_size (int): Dimension of input images, assumed to be square.
patch_embed (PatchEmbed): Module for patch embedding.
pos_embed (nn.Parameter | None): Absolute positional embedding for patches.
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings.
neck (nn.Sequential): Neck module to further process the output.
Methods:
forward: Processes input through patch embedding, positional embedding, blocks, and neck.
Examples:
>>> import torch
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
>>> input_image = torch.randn(1, 3, 224, 224)
>>> output = encoder(input_image)
>>> print(output.shape)
"""
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Initializes an ImageEncoderViT instance for encoding images using Vision Transformer architecture.
Args:
img_size (int): Input image size, assumed to be square.
patch_size (int): Size of image patches.
in_chans (int): Number of input image channels.
embed_dim (int): Dimension of patch embeddings.
depth (int): Number of transformer blocks.
num_heads (int): Number of attention heads in each block.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
out_chans (int): Number of output channels from the neck module.
qkv_bias (bool): If True, adds learnable bias to query, key, value projections.
norm_layer (Type[nn.Module]): Type of normalization layer to use.
act_layer (Type[nn.Module]): Type of activation layer to use.
use_abs_pos (bool): If True, uses absolute positional embeddings.
use_rel_pos (bool): If True, adds relative positional embeddings to attention maps.
rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
window_size (int): Size of attention window for windowed attention blocks.
global_attn_indexes (Tuple[int, ...]): Indices of blocks that use global attention.
Attributes:
img_size (int): Dimension of input images.
patch_embed (PatchEmbed): Module for patch embedding.
pos_embed (nn.Parameter | None): Absolute positional embedding for patches.
blocks (nn.ModuleList): List of transformer blocks.
neck (nn.Sequential): Neck module for final processing.
Examples:
>>> encoder = ImageEncoderViT(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12)
>>> input_image = torch.randn(1, 3, 224, 224)
>>> output = encoder(input_image)
>>> print(output.shape)
"""
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Processes input through patch embedding, positional embedding, transformer blocks, and neck module."""
x = self.patch_embed(x)
if self.pos_embed is not None:
pos_embed = (
F.interpolate(self.pos_embed.permute(0, 3, 1, 2), scale_factor=self.img_size / 1024).permute(0, 2, 3, 1)
if self.img_size != 1024
else self.pos_embed
)
x = x + pos_embed
for blk in self.blocks:
x = blk(x)
return self.neck(x.permute(0, 3, 1, 2))
class PromptEncoder(nn.Module):
"""
Encodes different types of prompts for input to SAM's mask decoder, producing sparse and dense embeddings.
Attributes:
embed_dim (int): Dimension of the embeddings.
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
num_point_embeddings (int): Number of point embeddings for different types of points.
point_embeddings (nn.ModuleList): List of point embeddings.
not_a_point_embed (nn.Embedding): Embedding for points that are not part of any label.
mask_input_size (Tuple[int, int]): Size of the input mask.
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided.
Methods:
get_dense_pe: Returns the positional encoding used to encode point prompts.
forward: Embeds different types of prompts, returning both sparse and dense embeddings.
Examples:
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
>>> boxes = torch.rand(1, 2, 2)
>>> masks = torch.rand(1, 1, 256, 256)
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
"""
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int],
input_image_size: Tuple[int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Initializes the PromptEncoder module for encoding various types of prompts.
This module encodes different types of prompts (points, boxes, masks) for input to SAM's mask decoder,
producing both sparse and dense embeddings.
Args:
embed_dim (int): The dimension of the embeddings.
image_embedding_size (Tuple[int, int]): The spatial size of the image embedding as (H, W).
input_image_size (Tuple[int, int]): The padded size of the input image as (H, W).
mask_in_chans (int): The number of hidden channels used for encoding input masks.
activation (Type[nn.Module]): The activation function to use when encoding input masks.
Attributes:
embed_dim (int): Dimension of the embeddings.
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
num_point_embeddings (int): Number of point embeddings for different types of points.
point_embeddings (nn.ModuleList): List of point embeddings.
not_a_point_embed (nn.Embedding): Embedding for points that are not part of any label.
mask_input_size (Tuple[int, int]): Size of the input mask.
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
Examples:
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
>>> boxes = torch.rand(1, 2, 2)
>>> masks = torch.rand(1, 1, 256, 256)
>>> sparse_embeddings, dense_embeddings = prompt_encoder(points, boxes, masks)
>>> print(sparse_embeddings.shape, dense_embeddings.shape)
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the dense positional encoding used for encoding point prompts.
This method generates a positional encoding for a dense set of points matching the shape of the image
encoding. The encoding is used to provide spatial information to the model when processing point prompts.
Returns:
(torch.Tensor): Positional encoding tensor with shape (1, embed_dim, H, W), where H and W are the
height and width of the image embedding size, respectively.
Examples:
>>> prompt_encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> dense_pe = prompt_encoder.get_dense_pe()
>>> print(dense_pe.shape)
torch.Size([1, 256, 64, 64])
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
"""Embeds point prompts by applying positional encoding and label-specific embeddings."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
point_embedding[labels == 2] += self.point_embeddings[2].weight
point_embedding[labels == 3] += self.point_embeddings[3].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts by applying positional encoding and adding corner embeddings."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 2)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs by downscaling and processing through convolutional layers."""
return self.mask_downscaling(masks)
@staticmethod
def _get_batch_size(
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> int:
"""Gets the batch size of the output given the batch size of the input prompts."""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
"""Returns the device of the first point embedding's weight tensor."""
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense embeddings.
Args:
points (Tuple[torch.Tensor, torch.Tensor] | None): Point coordinates and labels to embed. The first
tensor contains coordinates with shape (B, N, 2), and the second tensor contains labels with
shape (B, N).
boxes (torch.Tensor | None): Boxes to embed with shape (B, M, 2, 2), where M is the number of boxes.
masks (torch.Tensor | None): Masks to embed with shape (B, 1, H, W).
Returns:
(Tuple[torch.Tensor, torch.Tensor]): A tuple containing:
- sparse_embeddings (torch.Tensor): Sparse embeddings for points and boxes with shape (B, N, embed_dim).
- dense_embeddings (torch.Tensor): Dense embeddings for masks of shape (B, embed_dim, embed_H, embed_W).
Examples:
>>> encoder = PromptEncoder(256, (64, 64), (1024, 1024), 16)
>>> points = (torch.rand(1, 5, 2), torch.randint(0, 4, (1, 5)))
>>> boxes = torch.rand(1, 2, 2, 2)
>>> masks = torch.rand(1, 1, 256, 256)
>>> sparse_emb, dense_emb = encoder(points, boxes, masks)
>>> print(sparse_emb.shape, dense_emb.shape)
torch.Size([1, 7, 256]) torch.Size([1, 256, 64, 64])
"""
bs = self._get_batch_size(points, boxes, masks)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
)
return sparse_embeddings, dense_embeddings
class MemoryEncoder(nn.Module):
"""
Encodes pixel features and masks into a memory representation for efficient image segmentation.
This class processes pixel-level features and masks, fusing them to generate encoded memory representations
suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
Attributes:
mask_downsampler (MaskDownSampler): Module for downsampling input masks.
pix_feat_proj (nn.Conv2d): Convolutional layer for projecting pixel features.
fuser (Fuser): Module for fusing pixel features and masks.
position_encoding (PositionEmbeddingSine): Module for adding positional encoding to features.
out_proj (nn.Module): Output projection layer, either nn.Identity or nn.Conv2d.
Methods:
forward: Processes input pixel features and masks to generate encoded memory representations.
Examples:
>>> import torch
>>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
>>> pix_feat = torch.randn(1, 256, 64, 64)
>>> masks = torch.randn(1, 1, 64, 64)
>>> encoded_feat, pos = encoder(pix_feat, masks)
>>> print(encoded_feat.shape, pos.shape)
torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
"""
def __init__(
self,
out_dim,
in_dim=256, # in_dim of pix_feats
):
"""Initializes the MemoryEncoder for encoding pixel features and masks into memory representations."""
super().__init__()
self.mask_downsampler = MaskDownSampler(kernel_size=3, stride=2, padding=1)
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
self.fuser = Fuser(CXBlock(dim=256), num_layers=2)
self.position_encoding = PositionEmbeddingSine(num_pos_feats=64)
self.out_proj = nn.Identity()
if out_dim != in_dim:
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
def forward(
self,
pix_feat: torch.Tensor,
masks: torch.Tensor,
skip_mask_sigmoid: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Processes pixel features and masks to generate encoded memory representations for segmentation."""
if not skip_mask_sigmoid:
masks = F.sigmoid(masks)
masks = self.mask_downsampler(masks)
# Fuse pix_feats and downsampled masks, in case the visual features are on CPU, cast them to CUDA
pix_feat = pix_feat.to(masks.device)
x = self.pix_feat_proj(pix_feat)
x = x + masks
x = self.fuser(x)
x = self.out_proj(x)
pos = self.position_encoding(x).to(x.dtype)
return {"vision_features": x, "vision_pos_enc": [pos]}
class ImageEncoder(nn.Module):
"""
Encodes images using a trunk-neck architecture, producing multiscale features and positional encodings.
This class combines a trunk network for feature extraction with a neck network for feature refinement
and positional encoding generation. It can optionally discard the lowest resolution features.
Attributes:
trunk (nn.Module): The trunk network for initial feature extraction.
neck (nn.Module): The neck network for feature refinement and positional encoding generation.
scalp (int): Number of lowest resolution feature levels to discard.
Methods:
forward: Processes the input image through the trunk and neck networks.
Examples:
>>> trunk = SomeTrunkNetwork()
>>> neck = SomeNeckNetwork()
>>> encoder = ImageEncoder(trunk, neck, scalp=1)
>>> image = torch.randn(1, 3, 224, 224)
>>> output = encoder(image)
>>> print(output.keys())
dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
"""
def __init__(
self,
trunk: nn.Module,
neck: nn.Module,
scalp: int = 0,
):
"""Initializes the ImageEncoder with trunk and neck networks for feature extraction and refinement."""
super().__init__()
self.trunk = trunk
self.neck = neck
self.scalp = scalp
assert self.trunk.channel_list == self.neck.backbone_channel_list, (
f"Channel dims of trunk {self.trunk.channel_list} and neck {self.neck.backbone_channel_list} do not match."
)
def forward(self, sample: torch.Tensor):
"""Encodes input through patch embedding, positional embedding, transformer blocks, and neck module."""
features, pos = self.neck(self.trunk(sample))
if self.scalp > 0:
# Discard the lowest resolution features
features, pos = features[: -self.scalp], pos[: -self.scalp]
src = features[-1]
return {
"vision_features": src,
"vision_pos_enc": pos,
"backbone_fpn": features,
}
class FpnNeck(nn.Module):
"""
A Feature Pyramid Network (FPN) neck variant for multiscale feature fusion in object detection models.
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
similar to ViT positional embedding interpolation.
Attributes:
position_encoding (PositionEmbeddingSine): Sinusoidal positional encoding module.
convs (nn.ModuleList): List of convolutional layers for each backbone level.
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
fpn_top_down_levels (List[int]): Levels to have top-down features in outputs.
Methods:
forward: Performs forward pass through the FPN neck.
Examples:
>>> backbone_channels = [64, 128, 256, 512]
>>> fpn_neck = FpnNeck(256, backbone_channels)
>>> inputs = [torch.rand(1, c, 32, 32) for c in backbone_channels]
>>> outputs, positions = fpn_neck(inputs)
>>> print(len(outputs), len(positions))
4 4
"""
def __init__(
self,
d_model: int,
backbone_channel_list: List[int],
kernel_size: int = 1,
stride: int = 1,
padding: int = 0,
fpn_interp_model: str = "bilinear",
fuse_type: str = "sum",
fpn_top_down_levels: Optional[List[int]] = None,
):
"""
Initializes a modified Feature Pyramid Network (FPN) neck.
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
similar to ViT positional embedding interpolation.
Args:
d_model (int): Dimension of the model.
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
kernel_size (int): Kernel size for the convolutional layers.
stride (int): Stride for the convolutional layers.
padding (int): Padding for the convolutional layers.
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
fpn_top_down_levels (Optional[List[int]]): Levels to have top-down features in outputs.
Examples:
>>> backbone_channels = [64, 128, 256, 512]
>>> fpn_neck = FpnNeck(256, backbone_channels)
>>> print(fpn_neck)
"""
super().__init__()
self.position_encoding = PositionEmbeddingSine(num_pos_feats=256)
self.convs = nn.ModuleList()
self.backbone_channel_list = backbone_channel_list
for dim in backbone_channel_list:
current = nn.Sequential()
current.add_module(
"conv",
nn.Conv2d(
in_channels=dim,
out_channels=d_model,
kernel_size=kernel_size,
stride=stride,
padding=padding,
),
)
self.convs.append(current)
self.fpn_interp_model = fpn_interp_model
assert fuse_type in {"sum", "avg"}
self.fuse_type = fuse_type
# levels to have top-down features in its outputs
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
# have top-down propagation, while outputs of level 0 and level 1 have only
# lateral features from the same backbone level.
if fpn_top_down_levels is None:
# default is to have top-down features on all levels
fpn_top_down_levels = range(len(self.convs))
self.fpn_top_down_levels = list(fpn_top_down_levels)
def forward(self, xs: List[torch.Tensor]):
"""
Performs forward pass through the Feature Pyramid Network (FPN) neck.
This method processes a list of input tensors from the backbone through the FPN, applying lateral connections
and top-down feature fusion. It generates output feature maps and corresponding positional encodings.
Args:
xs (List[torch.Tensor]): List of input tensors from the backbone, each with shape (B, C, H, W).
Returns:
(Tuple[List[torch.Tensor], List[torch.Tensor]]): A tuple containing:
- out (List[torch.Tensor]): List of output feature maps after FPN processing, each with shape
(B, d_model, H, W).
- pos (List[torch.Tensor]): List of positional encodings corresponding to each output feature map.
Examples:
>>> fpn_neck = FpnNeck(d_model=256, backbone_channel_list=[64, 128, 256, 512])
>>> inputs = [torch.rand(1, c, 32, 32) for c in [64, 128, 256, 512]]
>>> outputs, positions = fpn_neck(inputs)
>>> print(len(outputs), len(positions))
4 4
"""
out = [None] * len(self.convs)
pos = [None] * len(self.convs)
assert len(xs) == len(self.convs)
# fpn forward pass
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
prev_features = None
# forward in top-down order (from low to high resolution)
n = len(self.convs) - 1
for i in range(n, -1, -1):
x = xs[i]
lateral_features = self.convs[n - i](x)
if i in self.fpn_top_down_levels and prev_features is not None:
top_down_features = F.interpolate(
prev_features.to(dtype=torch.float32),
scale_factor=2.0,
mode=self.fpn_interp_model,
align_corners=(None if self.fpn_interp_model == "nearest" else False),
antialias=False,
)
prev_features = lateral_features + top_down_features
if self.fuse_type == "avg":
prev_features /= 2
else:
prev_features = lateral_features
x_out = prev_features
out[i] = x_out
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
return out, pos
class Hiera(nn.Module):
"""
Hierarchical vision transformer for efficient multiscale feature extraction in image processing tasks.
This class implements a Hiera model, which is a hierarchical vision transformer architecture designed for
efficient multiscale feature extraction. It uses a series of transformer blocks organized into stages,
with optional pooling and global attention mechanisms.
Attributes:
window_spec (Tuple[int, ...]): Window sizes for each stage.
q_stride (Tuple[int, int]): Downsampling stride between stages.
stage_ends (List[int]): Indices of the last block in each stage.
q_pool_blocks (List[int]): Indices of blocks where pooling is applied.
return_interm_layers (bool): Whether to return intermediate layer outputs.
patch_embed (PatchEmbed): Module for patch embedding.
global_att_blocks (Tuple[int, ...]): Indices of blocks with global attention.
window_pos_embed_bkg_spatial_size (Tuple[int, int]): Spatial size for window positional embedding background.
pos_embed (nn.Parameter): Positional embedding for the background.
pos_embed_window (nn.Parameter): Positional embedding for the window.
blocks (nn.ModuleList): List of MultiScaleBlock modules.
channel_list (List[int]): List of output channel dimensions for each stage.
Methods:
_get_pos_embed: Generates positional embeddings by interpolating and combining window and background embeddings.
forward: Performs the forward pass through the Hiera model.
Examples:
>>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
>>> input_tensor = torch.randn(1, 3, 224, 224)
>>> output_features = model(input_tensor)
>>> for feat in output_features:
... print(feat.shape)
"""
def __init__(
self,
embed_dim: int = 96, # initial embed dim
num_heads: int = 1, # initial number of heads
drop_path_rate: float = 0.0, # stochastic depth
q_pool: int = 3, # number of q_pool stages
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
dim_mul: float = 2.0, # dim_mul factor at stage shift
head_mul: float = 2.0, # head_mul factor at stage shift
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
# window size per stage, when not using global att.
window_spec: Tuple[int, ...] = (
8,
4,
14,
7,
),
# global attn in these blocks
global_att_blocks: Tuple[int, ...] = (
12,
16,
20,
),
return_interm_layers=True, # return feats from every stage
):
"""Initializes the Hiera model, configuring its hierarchical vision transformer architecture."""
super().__init__()
assert len(stages) == len(window_spec)
self.window_spec = window_spec
depth = sum(stages)
self.q_stride = q_stride
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
assert 0 <= q_pool <= len(self.stage_ends[:-1])
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
self.return_interm_layers = return_interm_layers
self.patch_embed = PatchEmbed(
embed_dim=embed_dim,
kernel_size=(7, 7),
stride=(4, 4),
padding=(3, 3),
)
# Which blocks have global att?
self.global_att_blocks = global_att_blocks
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
cur_stage = 1
self.blocks = nn.ModuleList()
for i in range(depth):
dim_out = embed_dim
# lags by a block, so first block of
# next stage uses an initial window size
# of previous stage and final window size of current stage
window_size = self.window_spec[cur_stage - 1]
if self.global_att_blocks is not None:
window_size = 0 if i in self.global_att_blocks else window_size
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
drop_path=dpr[i],
q_stride=self.q_stride if i in self.q_pool_blocks else None,
window_size=window_size,
)
embed_dim = dim_out
self.blocks.append(block)
self.channel_list = (
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
if return_interm_layers
else [self.blocks[-1].dim_out]
)
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
"""Generates positional embeddings by interpolating and combining window and background embeddings."""
h, w = hw
window_embed = self.pos_embed_window
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
pos_embed = pos_embed + window_embed.tile([x // y for x, y in zip(pos_embed.shape, window_embed.shape)])
pos_embed = pos_embed.permute(0, 2, 3, 1)
return pos_embed
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
"""Performs forward pass through Hiera model, extracting multiscale features from input images."""
x = self.patch_embed(x)
# x: (B, H, W, C)
# Add pos embed
x = x + self._get_pos_embed(x.shape[1:3])
outputs = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if (i == self.stage_ends[-1]) or (i in self.stage_ends and self.return_interm_layers):
feats = x.permute(0, 3, 1, 2)
outputs.append(feats)
return outputs
|