File size: 7,532 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

import concurrent.futures
import statistics
import time
from typing import List, Optional, Tuple

import requests


class GCPRegions:
    """
    A class for managing and analyzing Google Cloud Platform (GCP) regions.

    This class provides functionality to initialize, categorize, and analyze GCP regions based on their
    geographical location, tier classification, and network latency.

    Attributes:
        regions (Dict[str, Tuple[int, str, str]]): A dictionary of GCP regions with their tier, city, and country.

    Methods:
        tier1: Returns a list of tier 1 GCP regions.
        tier2: Returns a list of tier 2 GCP regions.
        lowest_latency: Determines the GCP region(s) with the lowest network latency.

    Examples:
        >>> from ultralytics.hub.google import GCPRegions
        >>> regions = GCPRegions()
        >>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3)
        >>> print(f"Lowest latency region: {lowest_latency_region[0][0]}")
    """

    def __init__(self):
        """Initializes the GCPRegions class with predefined Google Cloud Platform regions and their details."""
        self.regions = {
            "asia-east1": (1, "Taiwan", "China"),
            "asia-east2": (2, "Hong Kong", "China"),
            "asia-northeast1": (1, "Tokyo", "Japan"),
            "asia-northeast2": (1, "Osaka", "Japan"),
            "asia-northeast3": (2, "Seoul", "South Korea"),
            "asia-south1": (2, "Mumbai", "India"),
            "asia-south2": (2, "Delhi", "India"),
            "asia-southeast1": (2, "Jurong West", "Singapore"),
            "asia-southeast2": (2, "Jakarta", "Indonesia"),
            "australia-southeast1": (2, "Sydney", "Australia"),
            "australia-southeast2": (2, "Melbourne", "Australia"),
            "europe-central2": (2, "Warsaw", "Poland"),
            "europe-north1": (1, "Hamina", "Finland"),
            "europe-southwest1": (1, "Madrid", "Spain"),
            "europe-west1": (1, "St. Ghislain", "Belgium"),
            "europe-west10": (2, "Berlin", "Germany"),
            "europe-west12": (2, "Turin", "Italy"),
            "europe-west2": (2, "London", "United Kingdom"),
            "europe-west3": (2, "Frankfurt", "Germany"),
            "europe-west4": (1, "Eemshaven", "Netherlands"),
            "europe-west6": (2, "Zurich", "Switzerland"),
            "europe-west8": (1, "Milan", "Italy"),
            "europe-west9": (1, "Paris", "France"),
            "me-central1": (2, "Doha", "Qatar"),
            "me-west1": (1, "Tel Aviv", "Israel"),
            "northamerica-northeast1": (2, "Montreal", "Canada"),
            "northamerica-northeast2": (2, "Toronto", "Canada"),
            "southamerica-east1": (2, "São Paulo", "Brazil"),
            "southamerica-west1": (2, "Santiago", "Chile"),
            "us-central1": (1, "Iowa", "United States"),
            "us-east1": (1, "South Carolina", "United States"),
            "us-east4": (1, "Northern Virginia", "United States"),
            "us-east5": (1, "Columbus", "United States"),
            "us-south1": (1, "Dallas", "United States"),
            "us-west1": (1, "Oregon", "United States"),
            "us-west2": (2, "Los Angeles", "United States"),
            "us-west3": (2, "Salt Lake City", "United States"),
            "us-west4": (2, "Las Vegas", "United States"),
        }

    def tier1(self) -> List[str]:
        """Returns a list of GCP regions classified as tier 1 based on predefined criteria."""
        return [region for region, info in self.regions.items() if info[0] == 1]

    def tier2(self) -> List[str]:
        """Returns a list of GCP regions classified as tier 2 based on predefined criteria."""
        return [region for region, info in self.regions.items() if info[0] == 2]

    @staticmethod
    def _ping_region(region: str, attempts: int = 1) -> Tuple[str, float, float, float, float]:
        """Pings a specified GCP region and returns latency statistics: mean, min, max, and standard deviation."""
        url = f"https://{region}-docker.pkg.dev"
        latencies = []
        for _ in range(attempts):
            try:
                start_time = time.time()
                _ = requests.head(url, timeout=5)
                latency = (time.time() - start_time) * 1000  # convert latency to milliseconds
                if latency != float("inf"):
                    latencies.append(latency)
            except requests.RequestException:
                pass
        if not latencies:
            return region, float("inf"), float("inf"), float("inf"), float("inf")

        std_dev = statistics.stdev(latencies) if len(latencies) > 1 else 0
        return region, statistics.mean(latencies), std_dev, min(latencies), max(latencies)

    def lowest_latency(
        self,
        top: int = 1,
        verbose: bool = False,
        tier: Optional[int] = None,
        attempts: int = 1,
    ) -> List[Tuple[str, float, float, float, float]]:
        """
        Determines the GCP regions with the lowest latency based on ping tests.

        Args:
            top (int): Number of top regions to return.
            verbose (bool): If True, prints detailed latency information for all tested regions.
            tier (int | None): Filter regions by tier (1 or 2). If None, all regions are tested.
            attempts (int): Number of ping attempts per region.

        Returns:
            (List[Tuple[str, float, float, float, float]]): List of tuples containing region information and
            latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).

        Examples:
            >>> regions = GCPRegions()
            >>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
            >>> print(results[0][0])  # Print the name of the lowest latency region
        """
        if verbose:
            print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...")

        regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys())
        with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
            results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test))

        sorted_results = sorted(results, key=lambda x: x[1])

        if verbose:
            print(f"{'Region':<25} {'Location':<35} {'Tier':<5} Latency (ms)")
            for region, mean, std, min_, max_ in sorted_results:
                tier, city, country = self.regions[region]
                location = f"{city}, {country}"
                if mean == float("inf"):
                    print(f"{region:<25} {location:<35} {tier:<5} Timeout")
                else:
                    print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
            print(f"\nLowest latency region{'s' if top > 1 else ''}:")
            for region, mean, std, min_, max_ in sorted_results[:top]:
                tier, city, country = self.regions[region]
                location = f"{city}, {country}"
                print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))")

        return sorted_results[:top]


# Usage example
if __name__ == "__main__":
    regions = GCPRegions()
    top_3_latency_tier1 = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=3)