File size: 8,302 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Ultralytics πŸš€ AGPL-3.0 License - https://ultralytics.com/license

import argparse

import cv2
import numpy as np
import onnxruntime as ort
import torch

from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_requirements, check_yaml


class RTDETR:
    """RTDETR object detection model class for handling inference and visualization."""

    def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5):
        """
        Initializes the RTDETR object with the specified parameters.

        Args:
            model_path: Path to the ONNX model file.
            img_path: Path to the input image.
            conf_thres: Confidence threshold for object detection.
            iou_thres: IoU threshold for non-maximum suppression
        """
        self.model_path = model_path
        self.img_path = img_path
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres

        # Set up the ONNX runtime session with CUDA and CPU execution providers
        self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
        self.model_input = self.session.get_inputs()
        self.input_width = self.model_input[0].shape[2]
        self.input_height = self.model_input[0].shape[3]

        # Load class names from the COCO dataset YAML file
        self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]

        # Generate a color palette for drawing bounding boxes
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))

    def draw_detections(self, box, score, class_id):
        """
        Draws bounding boxes and labels on the input image based on the detected objects.

        Args:
            box: Detected bounding box.
            score: Corresponding detection score.
            class_id: Class ID for the detected object.

        Returns:
            None
        """
        # Extract the coordinates of the bounding box
        x1, y1, x2, y2 = box

        # Retrieve the color for the class ID
        color = self.color_palette[class_id]

        # Draw the bounding box on the image
        cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)

        # Create the label text with class name and score
        label = f"{self.classes[class_id]}: {score:.2f}"

        # Calculate the dimensions of the label text
        (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)

        # Calculate the position of the label text
        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

        # Draw a filled rectangle as the background for the label text
        cv2.rectangle(
            self.img,
            (int(label_x), int(label_y - label_height)),
            (int(label_x + label_width), int(label_y + label_height)),
            color,
            cv2.FILLED,
        )

        # Draw the label text on the image
        cv2.putText(
            self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA
        )

    def preprocess(self):
        """
        Preprocesses the input image before performing inference.

        Returns:
            image_data: Preprocessed image data ready for inference.
        """
        # Read the input image using OpenCV
        self.img = cv2.imread(self.img_path)

        # Get the height and width of the input image
        self.img_height, self.img_width = self.img.shape[:2]

        # Convert the image color space from BGR to RGB
        img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)

        # Resize the image to match the input shape
        img = cv2.resize(img, (self.input_width, self.input_height))

        # Normalize the image data by dividing it by 255.0
        image_data = np.array(img) / 255.0

        # Transpose the image to have the channel dimension as the first dimension
        image_data = np.transpose(image_data, (2, 0, 1))  # Channel first

        # Expand the dimensions of the image data to match the expected input shape
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

        # Return the preprocessed image data
        return image_data

    def bbox_cxcywh_to_xyxy(self, boxes):
        """
        Converts bounding boxes from (center x, center y, width, height) format to (x_min, y_min, x_max, y_max) format.

        Args:
            boxes (numpy.ndarray): An array of shape (N, 4) where each row represents
                                a bounding box in (cx, cy, w, h) format.

        Returns:
            numpy.ndarray: An array of shape (N, 4) where each row represents
                        a bounding box in (x_min, y_min, x_max, y_max) format.
        """
        # Calculate half width and half height of the bounding boxes
        half_width = boxes[:, 2] / 2
        half_height = boxes[:, 3] / 2

        # Calculate the coordinates of the bounding boxes
        x_min = boxes[:, 0] - half_width
        y_min = boxes[:, 1] - half_height
        x_max = boxes[:, 0] + half_width
        y_max = boxes[:, 1] + half_height

        # Return the bounding boxes in (x_min, y_min, x_max, y_max) format
        return np.column_stack((x_min, y_min, x_max, y_max))

    def postprocess(self, model_output):
        """
        Postprocesses the model output to extract detections and draw them on the input image.

        Args:
            model_output: Output of the model inference.

        Returns:
            np.array: Annotated image with detections.
        """
        # Squeeze the model output to remove unnecessary dimensions
        outputs = np.squeeze(model_output[0])

        # Extract bounding boxes and scores from the model output
        boxes = outputs[:, :4]
        scores = outputs[:, 4:]

        # Get the class labels and scores for each detection
        labels = np.argmax(scores, axis=1)
        scores = np.max(scores, axis=1)

        # Apply confidence threshold to filter out low-confidence detections
        mask = scores > self.conf_thres
        boxes, scores, labels = boxes[mask], scores[mask], labels[mask]

        # Convert bounding boxes to (x_min, y_min, x_max, y_max) format
        boxes = self.bbox_cxcywh_to_xyxy(boxes)

        # Scale bounding boxes to match the original image dimensions
        boxes[:, 0::2] *= self.img_width
        boxes[:, 1::2] *= self.img_height

        # Draw detections on the image
        for box, score, label in zip(boxes, scores, labels):
            self.draw_detections(box, score, label)

        # Return the annotated image
        return self.img

    def main(self):
        """
        Executes the detection on the input image using the ONNX model.

        Returns:
            np.array: Output image with annotations.
        """
        # Preprocess the image for model input
        image_data = self.preprocess()

        # Run the model inference
        model_output = self.session.run(None, {self.model_input[0].name: image_data})

        # Process and return the model output
        return self.postprocess(model_output)


if __name__ == "__main__":
    # Set up argument parser for command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
    parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
    parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
    parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
    args = parser.parse_args()

    # Check for dependencies and set up ONNX runtime
    check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")

    # Create the detector instance with specified parameters
    detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)

    # Perform detection and get the output image
    output_image = detection.main()

    # Display the annotated output image
    cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
    cv2.imshow("Output", output_image)
    cv2.waitKey(0)