File size: 5,971 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Ultralytics πŸš€ AGPL-3.0 License - https://ultralytics.com/license

from itertools import product
from pathlib import Path

import pytest
import torch

from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
from ultralytics import YOLO
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
from ultralytics.utils import ASSETS, WEIGHTS_DIR
from ultralytics.utils.checks import check_amp


def test_checks():
    """Validate CUDA settings against torch CUDA functions."""
    assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
    assert torch.cuda.device_count() == CUDA_DEVICE_COUNT


@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_amp():
    """Test AMP training checks."""
    model = YOLO("yolo11n.pt").model.cuda()
    assert check_amp(model)


@pytest.mark.slow
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
@pytest.mark.parametrize(
    "task, dynamic, int8, half, batch",
    [  # generate all combinations but exclude those where both int8 and half are True
        (task, dynamic, int8, half, batch)
        # Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high
        # for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
        for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2])
        if not (int8 and half)  # exclude cases where both int8 and half are True
    ],
)
def test_export_engine_matrix(task, dynamic, int8, half, batch):
    """Test YOLO model export to TensorRT format for various configurations and run inference."""
    file = YOLO(TASK2MODEL[task]).export(
        format="engine",
        imgsz=32,
        dynamic=dynamic,
        int8=int8,
        half=half,
        batch=batch,
        data=TASK2DATA[task],
        workspace=1,  # reduce workspace GB for less resource utilization during testing
        simplify=True,  # use 'onnxslim'
    )
    YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32)  # exported model inference
    Path(file).unlink()  # cleanup
    Path(file).with_suffix(".cache").unlink() if int8 else None  # cleanup INT8 cache


@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_train():
    """Test model training on a minimal dataset using available CUDA devices."""
    device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1]
    YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device)  # requires imgsz>=64


@pytest.mark.slow
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_predict_multiple_devices():
    """Validate model prediction consistency across CPU and CUDA devices."""
    model = YOLO("yolo11n.pt")
    model = model.cpu()
    assert str(model.device) == "cpu"
    _ = model(SOURCE)  # CPU inference
    assert str(model.device) == "cpu"

    model = model.to("cuda:0")
    assert str(model.device) == "cuda:0"
    _ = model(SOURCE)  # CUDA inference
    assert str(model.device) == "cuda:0"

    model = model.cpu()
    assert str(model.device) == "cpu"
    _ = model(SOURCE)  # CPU inference
    assert str(model.device) == "cpu"

    model = model.cuda()
    assert str(model.device) == "cuda:0"
    _ = model(SOURCE)  # CUDA inference
    assert str(model.device) == "cuda:0"


@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_autobatch():
    """Check optimal batch size for YOLO model training using autobatch utility."""
    from ultralytics.utils.autobatch import check_train_batch_size

    check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True)


@pytest.mark.slow
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_utils_benchmarks():
    """Profile YOLO models for performance benchmarks."""
    from ultralytics.utils.benchmarks import ProfileModels

    # Pre-export a dynamic engine model to use dynamic inference
    YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1)
    ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()


@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_predict_sam():
    """Test SAM model predictions using different prompts, including bounding boxes and point annotations."""
    from ultralytics import SAM
    from ultralytics.models.sam import Predictor as SAMPredictor

    # Load a model
    model = SAM(WEIGHTS_DIR / "sam2.1_b.pt")

    # Display model information (optional)
    model.info()

    # Run inference
    model(SOURCE, device=0)

    # Run inference with bboxes prompt
    model(SOURCE, bboxes=[439, 437, 524, 709], device=0)

    # Run inference with no labels
    model(ASSETS / "zidane.jpg", points=[900, 370], device=0)

    # Run inference with 1D points and 1D labels
    model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0)

    # Run inference with 2D points and 1D labels
    model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0)

    # Run inference with multiple 2D points and 1D labels
    model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0)

    # Run inference with 3D points and 2D labels (multiple points per object)
    model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0)

    # Create SAMPredictor
    overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt")
    predictor = SAMPredictor(overrides=overrides)

    # Set image
    predictor.set_image(ASSETS / "zidane.jpg")  # set with image file
    # predictor(bboxes=[439, 437, 524, 709])
    # predictor(points=[900, 370], labels=[1])

    # Reset image
    predictor.reset_image()