Spaces:
Runtime error
Runtime error
############################################################## | |
# from https://github.com/rosinality/stylegan2-pytorch | |
############################################################## | |
from collections import OrderedDict | |
import math | |
import random | |
import functools | |
import operator | |
import torch | |
import models | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.autograd import Function | |
from swapae.models.networks.stylegan2_op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d | |
class PixelNorm(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, input): | |
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) | |
def make_kernel(k): | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.dim() == 1: | |
k = k[None, :] * k[:, None] | |
k /= k.sum() | |
return k | |
class Upsample(nn.Module): | |
def __init__(self, kernel, factor=2): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) * (factor ** 2) | |
self.register_buffer('kernel', kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) | |
return out | |
class Downsample(nn.Module): | |
def __init__(self, kernel, factor=2, pad=None, reflection_pad=False): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) | |
self.register_buffer('kernel', kernel) | |
self.reflection = reflection_pad | |
if pad is None: | |
p = kernel.shape[0] - factor | |
else: | |
p = pad | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
def forward(self, input): | |
if self.reflection: | |
input = F.pad(input, (self.pad[0], self.pad[1], self.pad[0], self.pad[1]), mode='reflect') | |
pad = (0, 0) | |
else: | |
pad = self.pad | |
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=pad) | |
return out | |
class Blur(nn.Module): | |
def __init__(self, kernel, pad, upsample_factor=1, reflection_pad=False): | |
super().__init__() | |
kernel = make_kernel(kernel) | |
if upsample_factor > 1: | |
kernel = kernel * (upsample_factor ** 2) | |
self.register_buffer('kernel', kernel) | |
self.pad = pad | |
self.reflection = reflection_pad | |
if self.reflection: | |
self.reflection_pad = nn.ReflectionPad2d((pad[0], pad[1], pad[0], pad[1])) | |
self.pad = (0, 0) | |
def forward(self, input): | |
if self.reflection: | |
input = self.reflection_pad(input) | |
out = upfirdn2d(input, self.kernel, pad=self.pad) | |
return out | |
class EqualConv2d(nn.Module): | |
def __init__( | |
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, lr_mul=1.0, | |
): | |
super().__init__() | |
self.weight = nn.Parameter( | |
torch.randn(out_channel, in_channel, kernel_size, kernel_size) | |
) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) * lr_mul | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
out = F.conv2d( | |
input, | |
self.weight * self.scale, | |
bias=self.bias, | |
stride=self.stride, | |
padding=self.padding, | |
) | |
return out | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
) | |
class EqualLinear(nn.Module): | |
def __init__( | |
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None | |
): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.activation = activation | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
if self.activation: | |
if input.dim() > 2: | |
out = F.conv2d(input, self.weight[:, :, None, None] * self.scale) | |
else: | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
else: | |
if input.dim() > 2: | |
out = F.conv2d(input, self.weight[:, :, None, None] * self.scale, | |
bias=self.bias * self.lr_mul | |
) | |
else: | |
out = F.linear( | |
input, self.weight * self.scale, bias=self.bias * self.lr_mul | |
) | |
return out | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' | |
) | |
class ScaledLeakyReLU(nn.Module): | |
def __init__(self, negative_slope=0.2): | |
super().__init__() | |
self.negative_slope = negative_slope | |
def forward(self, input): | |
out = F.leaky_relu(input, negative_slope=self.negative_slope) | |
return out * math.sqrt(2) | |
class ModulatedConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
demodulate=True, | |
upsample=False, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
): | |
super().__init__() | |
self.eps = 1e-8 | |
self.kernel_size = kernel_size | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.upsample = upsample | |
self.downsample = downsample | |
if upsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) - (kernel_size - 1) | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 + 1 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1)) | |
fan_in = in_channel * kernel_size ** 2 | |
self.scale = 1 / math.sqrt(fan_in) | |
self.padding = kernel_size // 2 | |
self.weight = nn.Parameter( | |
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) | |
) | |
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) | |
self.demodulate = demodulate | |
self.new_demodulation = True | |
def __repr__(self): | |
return ( | |
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' | |
f'upsample={self.upsample}, downsample={self.downsample})' | |
) | |
def forward(self, input, style): | |
batch, in_channel, height, width = input.shape | |
if style.dim() > 2: | |
style = F.interpolate(style, size=(input.size(2), input.size(3)), mode='bilinear', align_corners=False) | |
#style = self.modulation(style).unsqueeze(1) | |
style = self.modulation(style) | |
if self.demodulate: | |
style = style * torch.rsqrt(style.pow(2).mean([2], keepdim=True) + 1e-8) | |
input = input * style | |
weight = self.scale * self.weight | |
weight = weight.repeat(batch, 1, 1, 1, 1) | |
else: | |
style = style.view(batch, style.size(1)) | |
style = self.modulation(style).view(batch, 1, in_channel, 1, 1) | |
if self.new_demodulation: | |
style = style[:, 0, :, :, :] | |
if self.demodulate: | |
style = style * torch.rsqrt(style.pow(2).mean([1], keepdim=True) + 1e-8) | |
input = input * style | |
weight = self.scale * self.weight | |
weight = weight.repeat(batch, 1, 1, 1, 1) | |
else: | |
weight = self.scale * self.weight * style | |
if self.demodulate: | |
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) | |
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) | |
weight = weight.view( | |
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
) | |
if self.upsample: | |
input = input.view(1, batch * in_channel, height, width) | |
weight = weight.view( | |
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
) | |
weight = weight.transpose(1, 2).reshape( | |
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size | |
) | |
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
out = self.blur(out) | |
elif self.downsample: | |
input = self.blur(input) | |
_, _, height, width = input.shape | |
input = input.view(1, batch * in_channel, height, width) | |
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
else: | |
input = input.view(1, batch * in_channel, height, width) | |
out = F.conv2d(input, weight, padding=self.padding, groups=batch) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
return out | |
class NoiseInjection(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.weight = nn.Parameter(torch.zeros(1)) | |
self.fixed_noise = None | |
self.image_size = None | |
def forward(self, image, noise=None): | |
if self.image_size is None: | |
self.image_size = image.shape | |
if noise is None and self.fixed_noise is None: | |
batch, _, height, width = image.shape | |
noise = image.new_empty(batch, 1, height, width).normal_() | |
elif self.fixed_noise is not None: | |
noise = self.fixed_noise | |
# to avoid error when generating thumbnails in demo | |
if image.size(2) != noise.size(2) or image.size(3) != noise.size(3): | |
noise = F.interpolate(noise, image.shape[2:], mode="nearest") | |
else: | |
pass # use the passed noise | |
return image + self.weight * noise | |
class ConstantInput(nn.Module): | |
def __init__(self, channel, size=4): | |
super().__init__() | |
self.input = nn.Parameter(torch.randn(1, channel, size, size)) | |
def forward(self, input): | |
batch = input.shape[0] | |
out = self.input.repeat(batch, 1, 1, 1) | |
return out | |
class StyledConv(nn.Module): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
demodulate=True, | |
use_noise=True, | |
lr_mul=1.0, | |
): | |
super().__init__() | |
self.conv = ModulatedConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=upsample, | |
blur_kernel=blur_kernel, | |
demodulate=demodulate, | |
) | |
self.use_noise = use_noise | |
self.noise = NoiseInjection() | |
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) | |
# self.activate = ScaledLeakyReLU(0.2) | |
self.activate = FusedLeakyReLU(out_channel) | |
def forward(self, input, style, noise=None): | |
out = self.conv(input, style) | |
if self.use_noise: | |
out = self.noise(out, noise=noise) | |
# out = out + self.bias | |
out = self.activate(out) | |
return out | |
class ToRGB(nn.Module): | |
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
if upsample: | |
self.upsample = Upsample(blur_kernel) | |
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) | |
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
def forward(self, input, style, skip=None): | |
out = self.conv(input, style) | |
out = out + self.bias | |
if skip is not None: | |
skip = self.upsample(skip) | |
out = out + skip | |
return out | |
class Generator(nn.Module): | |
def __init__( | |
self, | |
size, | |
style_dim, | |
n_mlp, | |
channel_multiplier=2, | |
blur_kernel=[1, 3, 3, 1], | |
lr_mlp=0.01, | |
): | |
super().__init__() | |
self.size = size | |
self.style_dim = style_dim | |
layers = [PixelNorm()] | |
for i in range(n_mlp): | |
layers.append( | |
EqualLinear( | |
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu' | |
) | |
) | |
self.style = nn.Sequential(*layers) | |
self.channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256 * channel_multiplier, | |
128: 128 * channel_multiplier, | |
256: 64 * channel_multiplier, | |
512: 32 * channel_multiplier, | |
1024: 16 * channel_multiplier, | |
} | |
self.input = ConstantInput(self.channels[4]) | |
self.conv1 = StyledConv( | |
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel | |
) | |
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) | |
self.log_size = int(math.log(size, 2)) | |
self.num_layers = (self.log_size - 2) * 2 + 1 | |
self.convs = nn.ModuleList() | |
self.upsamples = nn.ModuleList() | |
self.to_rgbs = nn.ModuleList() | |
self.noises = nn.Module() | |
in_channel = self.channels[4] | |
for layer_idx in range(self.num_layers): | |
res = (layer_idx + 5) // 2 | |
shape = [1, 1, 2 ** res, 2 ** res] | |
self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape)) | |
for i in range(3, self.log_size + 1): | |
out_channel = self.channels[2 ** i] | |
self.convs.append( | |
StyledConv( | |
in_channel, | |
out_channel, | |
3, | |
style_dim, | |
upsample=True, | |
blur_kernel=blur_kernel, | |
) | |
) | |
self.convs.append( | |
StyledConv( | |
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel | |
) | |
) | |
self.to_rgbs.append(ToRGB(out_channel, style_dim)) | |
in_channel = out_channel | |
self.n_latent = self.log_size * 2 - 2 | |
def make_noise(self): | |
device = self.input.input.device | |
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] | |
for i in range(3, self.log_size + 1): | |
for _ in range(2): | |
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) | |
return noises | |
def mean_latent(self, n_latent): | |
latent_in = torch.randn( | |
n_latent, self.style_dim, device=self.input.input.device | |
) | |
latent = self.style(latent_in).mean(0, keepdim=True) | |
return latent | |
def get_latent(self, input): | |
return self.style(input) | |
def forward( | |
self, | |
styles, | |
return_latents=False, | |
inject_index=None, | |
truncation=1, | |
truncation_latent=None, | |
input_is_latent=False, | |
noise=None, | |
randomize_noise=True, | |
): | |
if not input_is_latent: | |
styles = [self.style(s) for s in styles] | |
if noise is None: | |
if randomize_noise: | |
noise = [None] * self.num_layers | |
else: | |
noise = [ | |
getattr(self.noises, f'noise_{i}') for i in range(self.num_layers) | |
] | |
if truncation < 1: | |
style_t = [] | |
for style in styles: | |
style_t.append( | |
truncation_latent + truncation * (style - truncation_latent) | |
) | |
styles = style_t | |
if len(styles) < 2: | |
inject_index = self.n_latent | |
if styles[0].dim() < 3: | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
else: | |
latent = styles[0] | |
else: | |
if inject_index is None: | |
inject_index = random.randint(1, self.n_latent - 1) | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) | |
latent = torch.cat([latent, latent2], 1) | |
out = self.input(latent) | |
out = self.conv1(out, latent[:, 0], noise=noise[0]) | |
skip = self.to_rgb1(out, latent[:, 1]) | |
i = 1 | |
for conv1, conv2, noise1, noise2, to_rgb in zip( | |
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs | |
): | |
out = conv1(out, latent[:, i], noise=noise1) | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
i += 2 | |
image = skip | |
if return_latents: | |
return image, latent | |
else: | |
return image, None | |
class ConvLayer(nn.Sequential): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
bias=True, | |
activate=True, | |
pad=None, | |
reflection_pad=False, | |
): | |
layers = [] | |
if downsample: | |
factor = 2 | |
if pad is None: | |
pad = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (pad + 1) // 2 | |
pad1 = pad // 2 | |
layers.append(("Blur", Blur(blur_kernel, pad=(pad0, pad1), reflection_pad=reflection_pad))) | |
stride = 2 | |
self.padding = 0 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 if pad is None else pad | |
if reflection_pad: | |
layers.append(("RefPad", nn.ReflectionPad2d(self.padding))) | |
self.padding = 0 | |
layers.append(("Conv", | |
EqualConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
padding=self.padding, | |
stride=stride, | |
bias=bias and not activate, | |
)) | |
) | |
if activate: | |
if bias: | |
layers.append(("Act", FusedLeakyReLU(out_channel))) | |
else: | |
layers.append(("Act", ScaledLeakyReLU(0.2))) | |
super().__init__(OrderedDict(layers)) | |
def forward(self, x): | |
out = super().forward(x) | |
return out | |
class ResBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], reflection_pad=False, pad=None, downsample=True): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3, reflection_pad=reflection_pad, pad=pad) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample, blur_kernel=blur_kernel, reflection_pad=reflection_pad, pad=pad) | |
self.skip = ConvLayer( | |
in_channel, out_channel, 1, downsample=downsample, blur_kernel=blur_kernel, activate=False, bias=False | |
) | |
def forward(self, input): | |
#print("before first resnet layeer, ", input.shape) | |
out = self.conv1(input) | |
#print("after first resnet layer, ", out.shape) | |
out = self.conv2(out) | |
#print("after second resnet layer, ", out.shape) | |
skip = self.skip(input) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class Discriminator(nn.Module): | |
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): | |
super().__init__() | |
channels = { | |
4: 512, | |
8: 512, | |
16: min(512, int(512 * channel_multiplier)), | |
32: min(512, int(512 * channel_multiplier)), | |
64: int(256 * channel_multiplier), | |
128: int(128 * channel_multiplier), | |
256: int(64 * channel_multiplier), | |
512: int(32 * channel_multiplier), | |
1024: int(16 * channel_multiplier), | |
} | |
original_size = size | |
size = 2 ** int(round(math.log(size, 2))) | |
convs = [('0', ConvLayer(3, channels[size], 1))] | |
log_size = int(math.log(size, 2)) | |
in_channel = channels[size] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
layer_name = str(9 - i) if i <= 8 else "%dx%d" % (2 ** i, 2 ** i) | |
convs.append((layer_name, ResBlock(in_channel, out_channel, blur_kernel))) | |
in_channel = out_channel | |
self.convs = nn.Sequential(OrderedDict(convs)) | |
#self.stddev_group = 4 | |
#self.stddev_feat = 1 | |
self.final_conv = ConvLayer(in_channel, channels[4], 3) | |
side_length = int(4 * original_size / size) | |
self.final_linear = nn.Sequential( | |
EqualLinear(channels[4] * (side_length ** 2), channels[4], activation='fused_lrelu'), | |
EqualLinear(channels[4], 1), | |
) | |
def forward(self, input): | |
out = self.convs(input) | |
batch, channel, height, width = out.shape | |
#group = min(batch, self.stddev_group) | |
#stddev = out.view( | |
# group, -1, self.stddev_feat, channel // self.stddev_feat, height, width | |
#) | |
#stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
#stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
#stddev = stddev.repeat(group, 1, height, width) | |
#out = torch.cat([out, stddev], 1) | |
out = self.final_conv(out) | |
out = out.view(batch, -1) | |
out = self.final_linear(out) | |
return out | |
def get_features(self, input): | |
return self.final_conv(self.convs(input)) | |