File size: 16,559 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
827b81f
1b2a9b1
 
 
 
827b81f
1b2a9b1
 
 
 
827b81f
1b2a9b1
827b81f
1b2a9b1
827b81f
 
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
827b81f
1b2a9b1
 
 
 
 
 
 
 
 
827b81f
1b2a9b1
 
 
 
 
 
827b81f
1b2a9b1
827b81f
 
1b2a9b1
 
827b81f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a9b1
 
 
 
 
 
 
 
827b81f
 
 
 
 
 
 
 
 
 
 
1b2a9b1
 
827b81f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a9b1
827b81f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF

from .taming_blocks import Encoder
from .loss import styleLossMaskv3
from .nnutils import SPADEResnetBlock, get_edges, initWave

from libs.nnutils import poolfeat, upfeat
from libs.utils import label2one_hot_torch
from .meanshift_utils import meanshift_cluster, meanshift_assign

from swapae.models.networks.stylegan2_layers import ConvLayer
from torch_geometric.nn import GCNConv
from torch_geometric.utils import softmax

class GCN(nn.Module):
    def __init__(self, n_cluster, temperature = 1, hidden_dim = 256):
        super().__init__()
        self.gcnconv1 = GCNConv(hidden_dim, hidden_dim, add_self_loops = True)
        self.gcnconv2 = GCNConv(hidden_dim, hidden_dim, add_self_loops = True)
        self.pool1 = nn.Sequential(nn.Conv2d(hidden_dim, n_cluster, 3, 1, 1))
        self.temperature = temperature

    def compute_edge_score_softmax(self, raw_edge_score, edge_index, num_nodes):
        return softmax(raw_edge_score, edge_index[1], num_nodes=num_nodes)

    def compute_edge_weight(self, node_feature, edge_index):
        src_feat = torch.gather(node_feature, 0, edge_index[0].unsqueeze(1).repeat(1, node_feature.shape[1]))
        tgt_feat = torch.gather(node_feature, 0, edge_index[1].unsqueeze(1).repeat(1, node_feature.shape[1]))
        raw_edge_weight = nn.CosineSimilarity(dim=1, eps=1e-6)(src_feat, tgt_feat)
        edge_weight = self.compute_edge_score_softmax(raw_edge_weight, edge_index, node_feature.shape[0])
        return raw_edge_weight.squeeze(), edge_weight.squeeze()

    def forward(self, sp_code, slic, clustering = False):
        edges, aff = get_edges(torch.argmax(slic, dim = 1).unsqueeze(1), sp_code.shape[1])
        prop_code = []
        sp_assign = []
        edge_weights = []
        conv_feats = []
        for i in range(sp_code.shape[0]):
            # compute edge weight
            edge_index = edges[i]
            raw_edge_weight, edge_weight = self.compute_edge_weight(sp_code[i], edge_index)
            feat = self.gcnconv1(sp_code[i], edge_index, edge_weight = edge_weight)
            raw_edge_weight, edge_weight = self.compute_edge_weight(feat, edge_index)
            edge_weights.append(raw_edge_weight)
            feat = F.leaky_relu(feat, 0.2)
            feat = self.gcnconv2(feat, edge_index, edge_weight = edge_weight)

            # maybe clustering
            conv_feat = upfeat(feat, slic[i:i+1])
            conv_feats.append(conv_feat)
            if not clustering:
                feat = conv_feat
                pred_mask = slic[i:i+1]
            else:
                pred_mask = self.pool1(conv_feat)
                # enforce pixels belong to the same superpixel to have same grouping label
                pred_mask = upfeat(poolfeat(pred_mask, slic[i:i+1]), slic[i:i+1])
                s_ = F.softmax(pred_mask * self.temperature, dim = 1)

                # compute texture code w.r.t grouping
                pool_feat = poolfeat(conv_feat, s_, avg = True)
                feat = upfeat(pool_feat, s_)

            prop_code.append(feat)
            sp_assign.append(pred_mask)
        prop_code = torch.cat(prop_code)
        conv_feats = torch.cat(conv_feats)
        return prop_code, torch.cat(sp_assign), conv_feats

class SPADEGenerator(nn.Module):
    def __init__(self, in_dim, hidden_dim):
        super().__init__()
        nf = hidden_dim // 16

        self.head_0 = SPADEResnetBlock(in_dim, 16 * nf)

        self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf)
        self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf)

        self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf)
        self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf)
        self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf)
        self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf)

        final_nc = nf

        self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)

        self.up = nn.Upsample(scale_factor=2)

    def forward(self, sine_wave, texon):

        x = self.head_0(sine_wave, texon)

        x = self.up(x)
        x = self.G_middle_0(x, texon)
        x = self.G_middle_1(x, texon)

        x = self.up(x)
        x = self.up_0(x, texon)
        x = self.up(x)
        x = self.up_1(x, texon)
        #x = self.up(x)
        x = self.up_2(x, texon)
        #x = self.up(x)
        x = self.up_3(x, texon)

        x = self.conv_img(F.leaky_relu(x, 2e-1))
        return x

class Waver(nn.Module):
    def __init__(self, tex_code_dim, zPeriodic):
        super(Waver, self).__init__()
        K = tex_code_dim
        layers =  [nn.Conv2d(tex_code_dim, K, 1)]
        layers += [nn.ReLU(True)]
        layers += [nn.Conv2d(K, 2 * zPeriodic, 1)]
        self.learnedWN =  nn.Sequential(*layers)
        self.waveNumbers = initWave(zPeriodic)

    def forward(self, GLZ=None):
        return (self.waveNumbers.to(GLZ.device) + self.learnedWN(GLZ))

class AE(nn.Module):
    def __init__(self, args, **ignore_kwargs):
        super(AE, self).__init__()

        # encoder & decoder
        self.enc = Encoder(ch=64, out_ch=3, ch_mult=[1,2,4,8], num_res_blocks=1, attn_resolutions=[],
                           in_channels=3, resolution=args.crop_size, z_channels=args.hidden_dim, double_z=False)
        self.G = SPADEGenerator(args.spatial_code_dim + 32, args.hidden_dim)

        self.add_module(
            "ToTexCode",
            nn.Sequential(
                ConvLayer(args.hidden_dim, args.hidden_dim, kernel_size=3, activate=True, bias=True),
                ConvLayer(args.hidden_dim, args.tex_code_dim, kernel_size=3, activate=True, bias=True),
                ConvLayer(args.tex_code_dim, args.hidden_dim, kernel_size=1, activate=False, bias=False)
            )
        )
        self.gcn = GCN(n_cluster = args.n_cluster, temperature = args.temperature, hidden_dim = args.hidden_dim)

        self.add_gcn_epoch = args.add_gcn_epoch
        self.add_clustering_epoch = args.add_clustering_epoch
        self.add_texture_epoch = args.add_texture_epoch

        self.patch_size = args.patch_size
        self.style_loss = styleLossMaskv3(device = args.device)
        self.sine_wave_dim = args.spatial_code_dim
        self.noise_dim = 32
        self.spatial_code_dim = args.spatial_code_dim

        # inpainting network
        if args.spatial_code_dim > 0:
            self.learnedWN = Waver(args.hidden_dim, zPeriodic = args.spatial_code_dim)

            self.add_module(
                "Amplitude",
                nn.Sequential(
                    nn.Conv2d(args.hidden_dim, args.hidden_dim//2, 1, 1, 0),
                    nn.Conv2d(args.hidden_dim//2, args.hidden_dim//4, 1, 1, 0),
                    nn.Conv2d(args.hidden_dim//4, args.spatial_code_dim, 1, 1, 0)
                    )
                )

        self.bandwidth = 3.0

    def sample_patch_from_mask(self, mask, patch_num = 10, patch_size = 64):
        """
        - Sample `patch_num` patches of size `patch_size*patch_size` w.r.t given mask
        """
        nonzeros = torch.nonzero(mask.view(-1)).squeeze()
        n = len(nonzeros)
        xys = []
        imgH, imgW = mask.shape
        half_patch = patch_size // 2
        iter_num = 0
        while len(xys) < patch_num:
            id = (torch.ones(n)*1.0/n).multinomial(num_samples=1, replacement=False)
            rx = nonzeros[id] // imgW
            ry = nonzeros[id] % imgW
            top = max(0, rx - half_patch)
            bot = min(imgH, rx + half_patch)
            left = max(0, ry - half_patch)
            right = min(imgW, ry + half_patch)
            patch_mask = mask[top:bot, left:right]
            if torch.sum(patch_mask) / (patch_size ** 2) > 0.5 or iter_num > 20:
                xys.append([top, bot, left, right])
            iter_num += 1
        return xys

    def get_sine_wave(self, GL, offset_mode = 'rec'):
        imgH, imgW = GL.shape[-2]//8, GL.shape[-1] // 8
        GL = F.interpolate(GL, size = (imgH, imgW), mode = 'nearest')
        xv, yv = np.meshgrid(np.arange(imgH), np.arange(imgW),indexing='ij')
        c = torch.FloatTensor(np.concatenate([xv[np.newaxis], yv[np.newaxis]], 0)[np.newaxis])
        c = c.to(GL.device)
        # c: 1, 2, 28, 28
        c = c.repeat(GL.shape[0], self.sine_wave_dim, 1, 1)
        # c: 1, 64, 28, 28
        period = self.learnedWN(GL)
        # period: 1, 64, 28, 28
        raw = period * c

        # random offset
        roffset = torch.zeros((GL.shape[0], self.sine_wave_dim, 1, 1)).to(GL.device).uniform_(-1, 1) * 6.28
        roffset = roffset.repeat(1, 1, imgH, imgW)
        rwave = torch.sin(raw[:, ::2] + raw[:, 1::2] + roffset)

        # zero offset
        zwave = torch.sin(raw[:, ::2] + raw[:, 1::2])
        A = self.Amplitude(GL)
        A = torch.sigmoid(A)
        wave = torch.cat((zwave, rwave)) * A.repeat(2, 1, 1, 1)
        return wave

    def syn_tex(self, tex_code, mask, imgH, imgW, offset_mode = 'rec', tex_idx = None):
        # synthesize all textures
        # spatial: B x 256 x 14 x 14
        # tex_code: B x N x 256
        B, N, _ = tex_code.shape
        H = imgH // 8
        W = imgW // 8

        # randomly sample a texture and synthesize it
        # throw away small texture segments
        areas = torch.sum(mask, dim=(2, 3))
        valid_idxs = torch.nonzero(areas[0] / (imgH * imgW) > 0.01).squeeze(-1)
        if tex_idx is None or tex_idx >= tex_code.shape[1]:
            tex_idx = valid_idxs[torch.multinomial(areas[0, valid_idxs], 1).squeeze()]
        else:
            sorted_list = torch.argsort(areas, dim = 1, descending = True)
            tex_idx = sorted_list[0, tex_idx]
        sampled_code = tex_code[:, tex_idx, :]
        rec_tex = sampled_code.view(1, -1, 1, 1).repeat(1, 1, imgH, imgW)

        # Decoder: Spatial & Texture code -> Image
        if self.noise_dim == 0:
            dec_input = self.get_sine_wave(rec_tex, offset_mode)
        elif self.spatial_code_dim == 0:
            dec_input = torch.randn(rec_tex.shape[0], self.noise_dim, H, W).to(tex_code.device)
        else:
            sine_wave = self.get_sine_wave(rec_tex, offset_mode)
            noise = torch.randn(sine_wave.shape[0], self.noise_dim, H, W).to(tex_code.device)
            dec_input = torch.cat((sine_wave, noise), dim = 1)

        tex_syn = self.G(dec_input, rec_tex.repeat(dec_input.shape[0], 1, 1, 1))

        return tex_syn, tex_idx

    def sample_tex_patches(self, tex_idx, rgb_img, rep_rec, mask, patch_num = 10):
        patches = []
        masks = []
        patch_masks = []
        # sample patches from input image and reconstruction
        for i in range(rgb_img.shape[0]):
            # WARNING: : This only works for batch_size = 1 for now
            maski = mask[i, tex_idx]
            masks.append(maski.unsqueeze(0))
            xys = self.sample_patch_from_mask(maski, patch_num = patch_num, patch_size = self.patch_size)
            # sample 10 patches from input image & reconstruction w.r.t group mask
            for k in range(patch_num):
                top, bot, left, right = xys[k]
                patch_ = rgb_img[i, :, top:bot, left:right]
                patch_mask_ = maski[top:bot, left:right]

                # In case the patch is on the boundary and smaller than patch_size
                # We put the patch at some random place of a black image
                h, w = patch_.shape[-2:]
                x = 0; y = 0
                if h < self.patch_size:
                    x = np.random.randint(0, self.patch_size - h)
                if w < self.patch_size:
                    y = np.random.randint(0, self.patch_size - w)
                patch = torch.zeros(1, 3, self.patch_size, self.patch_size).to(patch_.device)
                patch_mask = torch.zeros(1, 1, self.patch_size, self.patch_size).to(patch_.device)
                patch[:, :, x:x+h, y:y+w] = patch_
                patch_mask[:, :, x:x+h, y:y+w] = patch_mask_
                patches.append(patch)
                patch_masks.append(patch_mask)
        patches = torch.cat(patches)
        masks = torch.stack(masks)
        patch_masks = torch.cat(patch_masks)

        # sample patches from synthesized texture
        tex_patch_size = self.patch_size
        rep_patches = []
        for k in range(patch_num):
            i, j, h, w = transforms.RandomCrop.get_params(rep_rec, output_size=(tex_patch_size, tex_patch_size))
            rep_rec_patch = TF.crop(rep_rec, i, j, h, w)
            rep_patches.append(rep_rec_patch)
        rep_patches = torch.stack(rep_patches, dim = 1)
        rep_patches = rep_patches.view(-1, 3, tex_patch_size, tex_patch_size)
        return masks, patch_masks, patches, rep_patches

    def forward(self, rgb_img, slic, epoch = 0, test_time = False, test = False, tex_idx = None):
        #self.patch_size = np.random.randint(64, 160)
        B, _, imgH, imgW = rgb_img.shape
        outputs = {}
        rec_feat_list = []
        seg_map = [torch.argmax(slic.cpu(), dim = 1)]

        # Encoder: img (B, 3, H, W) -> feature (B, C, imgH//8, imgW//8)
        conv_feat, layer_feats = self.enc(rgb_img)
        B, C, H, W = conv_feat.shape

        # Texture code for each superpixel
        tex_code = self.ToTexCode(conv_feat)

        code = F.interpolate(tex_code, size = (imgH, imgW), mode = 'bilinear', align_corners = False)
        pool_code = poolfeat(code, slic, avg = True)

        if epoch >= self.add_gcn_epoch:
            prop_code, sp_assign, conv_feats = self.gcn(pool_code, slic, (self.add_clustering_epoch <= epoch))
            softmax = F.softmax(sp_assign * self.gcn.temperature, dim = 1)
            rec_feat_list.append(prop_code)
            seg_map = [torch.argmax(sp_assign.cpu(), dim = 1)]
        else:
            rec_code = upfeat(pool_code, slic)
            rec_feat_list.append(rec_code)
            softmax = slic

        # Texture synthesis
        if epoch >= self.add_texture_epoch:
            sp_feat = poolfeat(conv_feats, slic, avg = True).squeeze(0)
            pts = meanshift_cluster(sp_feat, self.bandwidth, meanshift_step = 15)[-1]
            with torch.no_grad():
                sp_assign, _ = meanshift_assign(pts, self.bandwidth)
                sp_assign = torch.tensor(sp_assign).unsqueeze(-1).to(slic.device).float()
                sp_assign = upfeat(sp_assign, slic)
                seg = label2one_hot_torch(sp_assign, C = sp_assign.max().long() + 1)
                seg_map = [torch.argmax(seg.cpu(), dim = 1)]

            # texture code for each connected group
            tex_seg = poolfeat(conv_feats, seg, avg = True)
            if test:
                rep_rec, tex_idx = self.syn_tex(tex_seg, seg, 564, 564, tex_idx = tex_idx)
                #rep_rec, tex_idx = self.syn_tex(tex_seg, seg, 1024, 1024, tex_idx = tex_idx)
            else:
                rep_rec, tex_idx = self.syn_tex(tex_seg, seg, imgH, imgW, tex_idx = tex_idx)
            rep_rec = (rep_rec + 1) / 2.0
            rgb_img = (rgb_img + 1) / 2.0

            # sample patches from input image, reconstruction & synthesized texture
            # zero offset
            zmasks, zpatch_masks, zpatches, zrep_patches = self.sample_tex_patches(tex_idx, rgb_img, rep_rec[:1], seg)
            # random offset
            rmasks, rpatch_masks, rpatches, rrep_patches = self.sample_tex_patches(tex_idx, rgb_img, rep_rec[1:], seg)
            masks = torch.cat((zmasks, rmasks))
            patch_masks = torch.cat((zpatch_masks, rpatch_masks))
            patches = torch.cat((zpatches, rpatches))
            rep_patches = torch.cat((zrep_patches, rrep_patches))

            # Gram matrix matching loss between:
            # - patches from synthesized texture v.s. patches from input image
            # - patches from reconstruction v.s. patches from input image
            outputs['style_loss'] = self.style_loss.forward_patch_img(rep_patches, rgb_img.repeat(2, 1, 1, 1), masks)

            outputs['rep_rec'] = rep_rec
            outputs['masks'] = masks
            outputs['patches'] = patches.view(-1, 3, self.patch_size, self.patch_size)
            outputs['patch_masks'] = patch_masks
            outputs['rep_patches'] = rep_patches * patch_masks + patches * (1 - patch_masks)

            outputs['gt'] = rgb_img
            bp_tex = rep_rec[:1, :, :imgH, :imgW] * masks[:1] + rgb_img * (1 - masks[:1])
            outputs['rec'] = bp_tex

        outputs['HA'] = torch.cat(seg_map)
        return outputs