Spaces:
Runtime error
Runtime error
File size: 16,559 Bytes
1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f 1b2a9b1 827b81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from .taming_blocks import Encoder
from .loss import styleLossMaskv3
from .nnutils import SPADEResnetBlock, get_edges, initWave
from libs.nnutils import poolfeat, upfeat
from libs.utils import label2one_hot_torch
from .meanshift_utils import meanshift_cluster, meanshift_assign
from swapae.models.networks.stylegan2_layers import ConvLayer
from torch_geometric.nn import GCNConv
from torch_geometric.utils import softmax
class GCN(nn.Module):
def __init__(self, n_cluster, temperature = 1, hidden_dim = 256):
super().__init__()
self.gcnconv1 = GCNConv(hidden_dim, hidden_dim, add_self_loops = True)
self.gcnconv2 = GCNConv(hidden_dim, hidden_dim, add_self_loops = True)
self.pool1 = nn.Sequential(nn.Conv2d(hidden_dim, n_cluster, 3, 1, 1))
self.temperature = temperature
def compute_edge_score_softmax(self, raw_edge_score, edge_index, num_nodes):
return softmax(raw_edge_score, edge_index[1], num_nodes=num_nodes)
def compute_edge_weight(self, node_feature, edge_index):
src_feat = torch.gather(node_feature, 0, edge_index[0].unsqueeze(1).repeat(1, node_feature.shape[1]))
tgt_feat = torch.gather(node_feature, 0, edge_index[1].unsqueeze(1).repeat(1, node_feature.shape[1]))
raw_edge_weight = nn.CosineSimilarity(dim=1, eps=1e-6)(src_feat, tgt_feat)
edge_weight = self.compute_edge_score_softmax(raw_edge_weight, edge_index, node_feature.shape[0])
return raw_edge_weight.squeeze(), edge_weight.squeeze()
def forward(self, sp_code, slic, clustering = False):
edges, aff = get_edges(torch.argmax(slic, dim = 1).unsqueeze(1), sp_code.shape[1])
prop_code = []
sp_assign = []
edge_weights = []
conv_feats = []
for i in range(sp_code.shape[0]):
# compute edge weight
edge_index = edges[i]
raw_edge_weight, edge_weight = self.compute_edge_weight(sp_code[i], edge_index)
feat = self.gcnconv1(sp_code[i], edge_index, edge_weight = edge_weight)
raw_edge_weight, edge_weight = self.compute_edge_weight(feat, edge_index)
edge_weights.append(raw_edge_weight)
feat = F.leaky_relu(feat, 0.2)
feat = self.gcnconv2(feat, edge_index, edge_weight = edge_weight)
# maybe clustering
conv_feat = upfeat(feat, slic[i:i+1])
conv_feats.append(conv_feat)
if not clustering:
feat = conv_feat
pred_mask = slic[i:i+1]
else:
pred_mask = self.pool1(conv_feat)
# enforce pixels belong to the same superpixel to have same grouping label
pred_mask = upfeat(poolfeat(pred_mask, slic[i:i+1]), slic[i:i+1])
s_ = F.softmax(pred_mask * self.temperature, dim = 1)
# compute texture code w.r.t grouping
pool_feat = poolfeat(conv_feat, s_, avg = True)
feat = upfeat(pool_feat, s_)
prop_code.append(feat)
sp_assign.append(pred_mask)
prop_code = torch.cat(prop_code)
conv_feats = torch.cat(conv_feats)
return prop_code, torch.cat(sp_assign), conv_feats
class SPADEGenerator(nn.Module):
def __init__(self, in_dim, hidden_dim):
super().__init__()
nf = hidden_dim // 16
self.head_0 = SPADEResnetBlock(in_dim, 16 * nf)
self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf)
self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf)
self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf)
self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf)
self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf)
self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf)
final_nc = nf
self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)
self.up = nn.Upsample(scale_factor=2)
def forward(self, sine_wave, texon):
x = self.head_0(sine_wave, texon)
x = self.up(x)
x = self.G_middle_0(x, texon)
x = self.G_middle_1(x, texon)
x = self.up(x)
x = self.up_0(x, texon)
x = self.up(x)
x = self.up_1(x, texon)
#x = self.up(x)
x = self.up_2(x, texon)
#x = self.up(x)
x = self.up_3(x, texon)
x = self.conv_img(F.leaky_relu(x, 2e-1))
return x
class Waver(nn.Module):
def __init__(self, tex_code_dim, zPeriodic):
super(Waver, self).__init__()
K = tex_code_dim
layers = [nn.Conv2d(tex_code_dim, K, 1)]
layers += [nn.ReLU(True)]
layers += [nn.Conv2d(K, 2 * zPeriodic, 1)]
self.learnedWN = nn.Sequential(*layers)
self.waveNumbers = initWave(zPeriodic)
def forward(self, GLZ=None):
return (self.waveNumbers.to(GLZ.device) + self.learnedWN(GLZ))
class AE(nn.Module):
def __init__(self, args, **ignore_kwargs):
super(AE, self).__init__()
# encoder & decoder
self.enc = Encoder(ch=64, out_ch=3, ch_mult=[1,2,4,8], num_res_blocks=1, attn_resolutions=[],
in_channels=3, resolution=args.crop_size, z_channels=args.hidden_dim, double_z=False)
self.G = SPADEGenerator(args.spatial_code_dim + 32, args.hidden_dim)
self.add_module(
"ToTexCode",
nn.Sequential(
ConvLayer(args.hidden_dim, args.hidden_dim, kernel_size=3, activate=True, bias=True),
ConvLayer(args.hidden_dim, args.tex_code_dim, kernel_size=3, activate=True, bias=True),
ConvLayer(args.tex_code_dim, args.hidden_dim, kernel_size=1, activate=False, bias=False)
)
)
self.gcn = GCN(n_cluster = args.n_cluster, temperature = args.temperature, hidden_dim = args.hidden_dim)
self.add_gcn_epoch = args.add_gcn_epoch
self.add_clustering_epoch = args.add_clustering_epoch
self.add_texture_epoch = args.add_texture_epoch
self.patch_size = args.patch_size
self.style_loss = styleLossMaskv3(device = args.device)
self.sine_wave_dim = args.spatial_code_dim
self.noise_dim = 32
self.spatial_code_dim = args.spatial_code_dim
# inpainting network
if args.spatial_code_dim > 0:
self.learnedWN = Waver(args.hidden_dim, zPeriodic = args.spatial_code_dim)
self.add_module(
"Amplitude",
nn.Sequential(
nn.Conv2d(args.hidden_dim, args.hidden_dim//2, 1, 1, 0),
nn.Conv2d(args.hidden_dim//2, args.hidden_dim//4, 1, 1, 0),
nn.Conv2d(args.hidden_dim//4, args.spatial_code_dim, 1, 1, 0)
)
)
self.bandwidth = 3.0
def sample_patch_from_mask(self, mask, patch_num = 10, patch_size = 64):
"""
- Sample `patch_num` patches of size `patch_size*patch_size` w.r.t given mask
"""
nonzeros = torch.nonzero(mask.view(-1)).squeeze()
n = len(nonzeros)
xys = []
imgH, imgW = mask.shape
half_patch = patch_size // 2
iter_num = 0
while len(xys) < patch_num:
id = (torch.ones(n)*1.0/n).multinomial(num_samples=1, replacement=False)
rx = nonzeros[id] // imgW
ry = nonzeros[id] % imgW
top = max(0, rx - half_patch)
bot = min(imgH, rx + half_patch)
left = max(0, ry - half_patch)
right = min(imgW, ry + half_patch)
patch_mask = mask[top:bot, left:right]
if torch.sum(patch_mask) / (patch_size ** 2) > 0.5 or iter_num > 20:
xys.append([top, bot, left, right])
iter_num += 1
return xys
def get_sine_wave(self, GL, offset_mode = 'rec'):
imgH, imgW = GL.shape[-2]//8, GL.shape[-1] // 8
GL = F.interpolate(GL, size = (imgH, imgW), mode = 'nearest')
xv, yv = np.meshgrid(np.arange(imgH), np.arange(imgW),indexing='ij')
c = torch.FloatTensor(np.concatenate([xv[np.newaxis], yv[np.newaxis]], 0)[np.newaxis])
c = c.to(GL.device)
# c: 1, 2, 28, 28
c = c.repeat(GL.shape[0], self.sine_wave_dim, 1, 1)
# c: 1, 64, 28, 28
period = self.learnedWN(GL)
# period: 1, 64, 28, 28
raw = period * c
# random offset
roffset = torch.zeros((GL.shape[0], self.sine_wave_dim, 1, 1)).to(GL.device).uniform_(-1, 1) * 6.28
roffset = roffset.repeat(1, 1, imgH, imgW)
rwave = torch.sin(raw[:, ::2] + raw[:, 1::2] + roffset)
# zero offset
zwave = torch.sin(raw[:, ::2] + raw[:, 1::2])
A = self.Amplitude(GL)
A = torch.sigmoid(A)
wave = torch.cat((zwave, rwave)) * A.repeat(2, 1, 1, 1)
return wave
def syn_tex(self, tex_code, mask, imgH, imgW, offset_mode = 'rec', tex_idx = None):
# synthesize all textures
# spatial: B x 256 x 14 x 14
# tex_code: B x N x 256
B, N, _ = tex_code.shape
H = imgH // 8
W = imgW // 8
# randomly sample a texture and synthesize it
# throw away small texture segments
areas = torch.sum(mask, dim=(2, 3))
valid_idxs = torch.nonzero(areas[0] / (imgH * imgW) > 0.01).squeeze(-1)
if tex_idx is None or tex_idx >= tex_code.shape[1]:
tex_idx = valid_idxs[torch.multinomial(areas[0, valid_idxs], 1).squeeze()]
else:
sorted_list = torch.argsort(areas, dim = 1, descending = True)
tex_idx = sorted_list[0, tex_idx]
sampled_code = tex_code[:, tex_idx, :]
rec_tex = sampled_code.view(1, -1, 1, 1).repeat(1, 1, imgH, imgW)
# Decoder: Spatial & Texture code -> Image
if self.noise_dim == 0:
dec_input = self.get_sine_wave(rec_tex, offset_mode)
elif self.spatial_code_dim == 0:
dec_input = torch.randn(rec_tex.shape[0], self.noise_dim, H, W).to(tex_code.device)
else:
sine_wave = self.get_sine_wave(rec_tex, offset_mode)
noise = torch.randn(sine_wave.shape[0], self.noise_dim, H, W).to(tex_code.device)
dec_input = torch.cat((sine_wave, noise), dim = 1)
tex_syn = self.G(dec_input, rec_tex.repeat(dec_input.shape[0], 1, 1, 1))
return tex_syn, tex_idx
def sample_tex_patches(self, tex_idx, rgb_img, rep_rec, mask, patch_num = 10):
patches = []
masks = []
patch_masks = []
# sample patches from input image and reconstruction
for i in range(rgb_img.shape[0]):
# WARNING: : This only works for batch_size = 1 for now
maski = mask[i, tex_idx]
masks.append(maski.unsqueeze(0))
xys = self.sample_patch_from_mask(maski, patch_num = patch_num, patch_size = self.patch_size)
# sample 10 patches from input image & reconstruction w.r.t group mask
for k in range(patch_num):
top, bot, left, right = xys[k]
patch_ = rgb_img[i, :, top:bot, left:right]
patch_mask_ = maski[top:bot, left:right]
# In case the patch is on the boundary and smaller than patch_size
# We put the patch at some random place of a black image
h, w = patch_.shape[-2:]
x = 0; y = 0
if h < self.patch_size:
x = np.random.randint(0, self.patch_size - h)
if w < self.patch_size:
y = np.random.randint(0, self.patch_size - w)
patch = torch.zeros(1, 3, self.patch_size, self.patch_size).to(patch_.device)
patch_mask = torch.zeros(1, 1, self.patch_size, self.patch_size).to(patch_.device)
patch[:, :, x:x+h, y:y+w] = patch_
patch_mask[:, :, x:x+h, y:y+w] = patch_mask_
patches.append(patch)
patch_masks.append(patch_mask)
patches = torch.cat(patches)
masks = torch.stack(masks)
patch_masks = torch.cat(patch_masks)
# sample patches from synthesized texture
tex_patch_size = self.patch_size
rep_patches = []
for k in range(patch_num):
i, j, h, w = transforms.RandomCrop.get_params(rep_rec, output_size=(tex_patch_size, tex_patch_size))
rep_rec_patch = TF.crop(rep_rec, i, j, h, w)
rep_patches.append(rep_rec_patch)
rep_patches = torch.stack(rep_patches, dim = 1)
rep_patches = rep_patches.view(-1, 3, tex_patch_size, tex_patch_size)
return masks, patch_masks, patches, rep_patches
def forward(self, rgb_img, slic, epoch = 0, test_time = False, test = False, tex_idx = None):
#self.patch_size = np.random.randint(64, 160)
B, _, imgH, imgW = rgb_img.shape
outputs = {}
rec_feat_list = []
seg_map = [torch.argmax(slic.cpu(), dim = 1)]
# Encoder: img (B, 3, H, W) -> feature (B, C, imgH//8, imgW//8)
conv_feat, layer_feats = self.enc(rgb_img)
B, C, H, W = conv_feat.shape
# Texture code for each superpixel
tex_code = self.ToTexCode(conv_feat)
code = F.interpolate(tex_code, size = (imgH, imgW), mode = 'bilinear', align_corners = False)
pool_code = poolfeat(code, slic, avg = True)
if epoch >= self.add_gcn_epoch:
prop_code, sp_assign, conv_feats = self.gcn(pool_code, slic, (self.add_clustering_epoch <= epoch))
softmax = F.softmax(sp_assign * self.gcn.temperature, dim = 1)
rec_feat_list.append(prop_code)
seg_map = [torch.argmax(sp_assign.cpu(), dim = 1)]
else:
rec_code = upfeat(pool_code, slic)
rec_feat_list.append(rec_code)
softmax = slic
# Texture synthesis
if epoch >= self.add_texture_epoch:
sp_feat = poolfeat(conv_feats, slic, avg = True).squeeze(0)
pts = meanshift_cluster(sp_feat, self.bandwidth, meanshift_step = 15)[-1]
with torch.no_grad():
sp_assign, _ = meanshift_assign(pts, self.bandwidth)
sp_assign = torch.tensor(sp_assign).unsqueeze(-1).to(slic.device).float()
sp_assign = upfeat(sp_assign, slic)
seg = label2one_hot_torch(sp_assign, C = sp_assign.max().long() + 1)
seg_map = [torch.argmax(seg.cpu(), dim = 1)]
# texture code for each connected group
tex_seg = poolfeat(conv_feats, seg, avg = True)
if test:
rep_rec, tex_idx = self.syn_tex(tex_seg, seg, 564, 564, tex_idx = tex_idx)
#rep_rec, tex_idx = self.syn_tex(tex_seg, seg, 1024, 1024, tex_idx = tex_idx)
else:
rep_rec, tex_idx = self.syn_tex(tex_seg, seg, imgH, imgW, tex_idx = tex_idx)
rep_rec = (rep_rec + 1) / 2.0
rgb_img = (rgb_img + 1) / 2.0
# sample patches from input image, reconstruction & synthesized texture
# zero offset
zmasks, zpatch_masks, zpatches, zrep_patches = self.sample_tex_patches(tex_idx, rgb_img, rep_rec[:1], seg)
# random offset
rmasks, rpatch_masks, rpatches, rrep_patches = self.sample_tex_patches(tex_idx, rgb_img, rep_rec[1:], seg)
masks = torch.cat((zmasks, rmasks))
patch_masks = torch.cat((zpatch_masks, rpatch_masks))
patches = torch.cat((zpatches, rpatches))
rep_patches = torch.cat((zrep_patches, rrep_patches))
# Gram matrix matching loss between:
# - patches from synthesized texture v.s. patches from input image
# - patches from reconstruction v.s. patches from input image
outputs['style_loss'] = self.style_loss.forward_patch_img(rep_patches, rgb_img.repeat(2, 1, 1, 1), masks)
outputs['rep_rec'] = rep_rec
outputs['masks'] = masks
outputs['patches'] = patches.view(-1, 3, self.patch_size, self.patch_size)
outputs['patch_masks'] = patch_masks
outputs['rep_patches'] = rep_patches * patch_masks + patches * (1 - patch_masks)
outputs['gt'] = rgb_img
bp_tex = rep_rec[:1, :, :imgH, :imgW] * masks[:1] + rgb_img * (1 - masks[:1])
outputs['rec'] = bp_tex
outputs['HA'] = torch.cat(seg_map)
return outputs
|