File size: 9,002 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""Training base class
"""
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.fft
import torch

import numpy as np
import argparse
import wandb
import math
import time
import os
from . import flow_transforms

class TrainerBase():
    def __init__(self, args):
        """
        Initialization function.
        """
        cudnn.benchmark = True

        os.environ['WANDB_DIR'] = args.work_dir
        args.use_wandb = (args.use_wandb == 1)

        if args.use_wandb:
            wandb.login(key="d56eb81cd6396f0a181524ba214f488cf281e76b")
            wandb.init(project=args.project_name, name=args.exp_name)
            wandb.config.update(args)

        self.mean_values = torch.tensor([0.411, 0.432, 0.45]).view(1, 3, 1, 1).cuda()
        self.color_palette = np.loadtxt('data/palette.txt',dtype=np.uint8).reshape(-1,3)

        self.args = args

    def init_dataset(self):          
        """
        Initialize dataset
        """
        if self.args.dataset == 'BSD500':
            from ..data import BSD500
            # ==========  Data loading code ==============
            input_transform = transforms.Compose([
                flow_transforms.ArrayToTensor(),
                transforms.Normalize(mean=[0,0,0], std=[255,255,255]),
                transforms.Normalize(mean=[0.411,0.432,0.45], std=[1,1,1])
            ])

            val_input_transform = transforms.Compose([
                flow_transforms.ArrayToTensor(),
                transforms.Normalize(mean=[0, 0, 0], std=[255, 255, 255]),
                transforms.Normalize(mean=[0.411, 0.432, 0.45], std=[1, 1, 1])
            ])

            target_transform = transforms.Compose([
                flow_transforms.ArrayToTensor(),
            ])

            co_transform = flow_transforms.Compose([
                    flow_transforms.RandomCrop((self.args.train_img_height , self.args.train_img_width)),
                    flow_transforms.RandomVerticalFlip(),
                    flow_transforms.RandomHorizontalFlip()
            ])
            print("=> loading img pairs from '{}'".format(self.args.data))
            train_set, val_set = BSD500(self.args.data,
                                        transform=input_transform,
                                        val_transform = val_input_transform,
                                        target_transform=target_transform,
                                        co_transform=co_transform,
                                        bi_filter=True)
            print('{} samples found, {} train samples and {} val samples '.format(len(val_set)+len(train_set), len(train_set), len(val_set)))

            self.train_loader = torch.utils.data.DataLoader(
                                train_set, batch_size=self.args.batch_size,
                                num_workers=self.args.workers, pin_memory=True, shuffle=True, drop_last=True)
        elif self.args.dataset == 'texture':
            from ..data.texture_v3 import Dataset
            dataset = Dataset(self.args.data_path, crop_size=self.args.train_img_height)
            self.train_loader = torch.utils.data.DataLoader(dataset     = dataset,
                                                            batch_size  = self.args.batch_size,
                                                            shuffle     = True,
                                                            num_workers = self.args.workers,
                                                            drop_last   = True)
        elif self.args.dataset == 'DIV2K':
            from basicsr.data import create_dataloader, create_dataset
            opt = {}
            opt['dist'] = False
            opt['phase'] = 'train'

            opt['name'] = 'DIV2K'
            opt['type'] = 'PairedImageDataset'
            opt['dataroot_gt'] = self.args.HR_dir
            opt['dataroot_lq'] = self.args.LR_dir
            opt['filename_tmpl'] = '{}'
            opt['io_backend'] = dict(type='disk')

            opt['gt_size'] = self.args.train_img_height
            opt['use_flip'] = True
            opt['use_rot'] = True

            opt['use_shuffle'] = True
            opt['num_worker_per_gpu'] = self.args.workers
            opt['batch_size_per_gpu'] = self.args.batch_size
            opt['scale'] = int(self.args.ratio)

            opt['dataset_enlarge_ratio'] = 1
            dataset = create_dataset(opt)
            self.train_loader = create_dataloader(
            dataset, opt, num_gpu=1, dist=opt['dist'], sampler=None)
        else:
            raise ValueError("Unknown dataset: {}.".format(self.args.dataset))
    
    def init_training(self):
        self.init_constant()
        self.init_dataset()
        self.define_model()
        self.define_criterion()
        self.define_optimizer()
    
    def adjust_learning_rate(self, iteration):
        """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
        lr = self.args.lr * (0.95 ** (iteration // self.args.lr_decay_freq))
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = lr
    
    def logging(self, iteration, epoch):
        print_str = "[{}/{}][{}/{}], ".format(iteration, len(self.train_loader), epoch, self.args.nepochs)
        for k,v in self.losses.items():
            print_str += "{}: {:4f} ".format(k, v)
        print_str += "time: {:2f}.".format(self.iter_time)
        print(print_str)

    def get_sp_grid(self, H, W, G, R = 1):
        W = int(W // R)
        H = int(H // R)
        if G > min(H, W):
            raise ValueError('Grid size must be smaller than image size!')
        grid = torch.from_numpy(np.arange(G**2)).view(1, 1, G, G)
        grid = torch.cat([grid]*(int(math.ceil(W/G))), dim = -1)
        grid = torch.cat([grid]*(int(math.ceil(H/G))), dim = -2)
        grid = grid[:, :, :H, :W]
        return grid.float()
    
    def save_network(self, name = None):
        cpk = {}
        cpk['epoch'] = self.epoch
        cpk['lr'] = self.optimizer.param_groups[0]['lr']
        if hasattr(self.model, 'module'):
            cpk['model'] = self.model.module.cpu().state_dict()
        else:
            cpk['model'] = self.model.cpu().state_dict()
        if name is None:
            out_path = os.path.join(self.args.out_dir, "cpk.pth")
        else:
            out_path = os.path.join(self.args.out_dir, name + ".pth")
        torch.save(cpk, out_path)
        self.model.cuda()
        return
    
    def init_constant(self):
        return

    def define_model(self):
        raise NotImplementedError
    
    def define_criterion(self):
        raise NotImplementedError
    
    def define_optimizer(self):
        raise NotImplementedError

    def display(self):
        raise NotImplementedError
    
    def forward(self):
        raise NotImplementedError
    
    def train(self):
        args = self.args
        total_iteration = 0
        for epoch in range(args.nepochs):
            self.epoch = epoch
            for iteration, data in enumerate(self.train_loader):
                if args.dataset == 'BSD500':
                    image = data[0].cuda()
                    self.label = data[1].cuda()
                elif args.dataset == 'texture':
                    image = data[0].cuda()
                    self.image2 = data[1].cuda()
                else:
                    image = data['lq'].cuda()
                    self.gt = data['gt'].cuda()
                start_time = time.time()
                total_iteration += 1
                self.optimizer.zero_grad()
                image = image.cuda()
                if args.dataset == 'BSD500':
                    self.image = image + self.mean_values
                    self.gt = self.image
                else:
                    self.image = image
                self.forward()
                total_loss = 0
                for k,v in self.losses.items():
                    if hasattr(args, '{}_wt'.format(k)):
                        total_loss += v * getattr(args, '{}_wt'.format(k))
                    else:
                        total_loss += v
                total_loss.backward()
                self.optimizer.step()
                end_time = time.time()
                self.iter_time = end_time - start_time
            
                self.adjust_learning_rate(total_iteration)
            
                if((iteration + 1) % args.log_freq == 0):
                    self.logging(iteration, epoch)
                    if args.use_wandb:
                        wandb.log(self.losses)
            
                if(iteration % args.display_freq == 0):
                    example_images = self.display()
                    if args.use_wandb:
                        wandb.log({'images': example_images})
            
            if((epoch + 1) % args.save_freq == 0):
                self.save_network()